Publications by authors named "Hermien Van Bokhorst-van de Veen"

Fungi are able to grow on diverse food products and contribute to food spoilage worldwide causing food loss. Consumers prefer freshly squeezed fruit juices, however, the shelf life of these juices is limited due to outgrowth of yeast and fungi. The shelf life of pulsed electric field (PEF) treated juice can be extended from 8 days up to a few weeks before spoilage by moulds becomes apparent.

View Article and Find Full Text PDF

Food spoilage is often caused by microorganisms. The predominant spoilage microorganisms of pasteurized, chilled ready-to-eat (RTE) mixed rice-vegetable meals stored at 7°C were isolated and determined as Paenibacillus species. These sporeforming psychrotrophic bacteria are well adapted to grow in the starch-rich environment of pasteurized and chilled meals.

View Article and Find Full Text PDF

Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores.

View Article and Find Full Text PDF

Background: To cope with environmental challenges bacteria possess sophisticated defense mechanisms that involve stress-induced adaptive responses. The canonical stress regulators CtsR and HrcA play a central role in the adaptations to a plethora of stresses in a variety of organisms. Here, we determined the CtsR and HrcA regulons of the lactic acid bacterium Lactobacillus plantarum WCFS1 grown under reference (28°C) and elevated (40°C) temperatures, using ctsR, hrcA, and ctsR-hrcA deletion mutants.

View Article and Find Full Text PDF

Probiotic bacteria harbor effector molecules that confer health benefits, but also adaptation factors that enable them to persist in the gastrointestinal tract of the consumer. To study these adaptation factors, an antibiotic-resistant derivative of the probiotic model organism Lactobacillus plantarum WCFS1 was repeatedly exposed to the mouse digestive tract by three consecutive rounds of (re)feeding of the longest persisting colonies. This exposure to the murine intestine allowed the isolation of intestine-adapted derivatives of the original strain that displayed prolonged digestive tract residence time.

View Article and Find Full Text PDF

Background: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species. However, data on the in situ persistence characteristics of individual or mixtures of strains of the same species in the gastrointestinal tract of healthy human volunteers have not been reported to date.

View Article and Find Full Text PDF

Background: Lactic acid bacteria (LAB) are applied worldwide in the production of a variety of fermented food products. Additionally, specific Lactobacillus species are nowadays recognized for their health-promoting effects on the consumer. To optimally exert such beneficial effects, it is considered of great importance that these probiotic bacteria reach their target sites in the gut alive.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB) are utilized widely for the fermentation of foods. In the current post-genomic era, tools have been developed that explore genetic diversity among LAB strains aiming to link these variations to differential phenotypes observed in the strains investigated. However, these genotype-phenotype matching approaches fail to assess the role of conserved genes in the determination of physiological characteristics of cultures by environmental conditions.

View Article and Find Full Text PDF

This paper describes the molecular responses of Lactobacillus plantarum WCFS1 toward ethanol exposure. Global transcriptome profiling using DNA microarrays demonstrated adaptation of the microorganism to the presence of 8% ethanol over short (10-min and 30-min) and long (24-h) time intervals. A total of 57 genes were differentially expressed at all time points.

View Article and Find Full Text PDF