The chemotherapeutic anthracycline metabolite doxorubicinol (doxOL) has been shown to interact with and disrupt the function of the cardiac ryanodine receptor Ca release channel (RyR2) in the sarcoplasmic reticulum (SR) membrane and the SR Ca binding protein calsequestrin 2 (CSQ2). Normal increases in RyR2 activity in response to increasing diastolic SR [Ca] are influenced by CSQ2 and are disrupted in arrhythmic conditions. Therefore, we explored the action of doxOL on RyR2's response to changes in luminal [Ca] seen during diastole.
View Article and Find Full Text PDFThe skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years.
View Article and Find Full Text PDFBackground: Although excitation-contraction (EC) coupling in skeletal muscle relies on physical activation of the skeletal ryanodine receptor (RyR1) Ca(2+) release channel by dihydropyridine receptors (DHPRs), the activation pathway between the DHPR and RyR1 remains unknown. However, the pathway includes the DHPR β1a subunit which is integral to EC coupling and activates RyR1. In this manuscript, we explore the isoform specificity of β1a activation of RyRs and the β1a binding site on RyR1.
View Article and Find Full Text PDFThe second of three SPRY domains (SPRY2, S1085 -V1208) located in the skeletal muscle ryanodine receptor (RyR1) is contained within regions of RyR1 that influence EC coupling and bind to imperatoxin A, a toxin probe of RyR1 channel gating. We examined the binding of the F loop (P1107-A1121) in SPRY2 to the ASI/basic region in RyR1 (T3471-G3500, containing both alternatively spliced (ASI) residues and neighboring basic amino acids). We then investigated the possible influence of this interaction on excitation contraction (EC) coupling.
View Article and Find Full Text PDF