The rubber elasticity theory has been lengthily applied to several polymeric hydrogel substances and upgraded from idealistic models to consider imperfections in the polymer network. The theory relies solely on hyperelastic material models in order to provide a description of the elastic polymer network. While this is also applicable to polymer gels, such hydrogels are rather characterized by their water content and visco-elastic mechanical properties.
View Article and Find Full Text PDFWithin the healthy human body, cells reside within the physiological environment of a tissue compound. Here, they are subject to constant low levels of mechanical stress that can influence the growth and differentiation of the cells. The liposuction of adipose tissue and the subsequent isolation of mesenchymal stem/stromal cells (MSCs), for example, are procedures that induce a high level of mechanical shear stress.
View Article and Find Full Text PDFBackground: Preserving residual hearing after cochlear implant (CI) surgery remains a crucial challenge. The application of dexamethasone (DEX) has been proven to positively affect residual hearing. To deliver DEX in a localized and controlled way, a round window niche implant (RNI), allowing drug diffusion via the round window membrane into the cochlea, may be used.
View Article and Find Full Text PDFThis review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR.
View Article and Find Full Text PDFIn ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome these limitations, but they are largely absent in the literature and still lack practical applications.
View Article and Find Full Text PDFThis paper delves into the application of vibration-based energy harvesting to power environmental sensor nodes, a critical component of modern data collection systems. These sensor nodes play a crucial role in structural health monitoring, providing essential data on external conditions that can affect the health and performance of structures. We investigate the feasibility and efficiency of utilizing piezoelectric vibration energy harvesters to sustainably power environmental wireless sensor nodes on the one hand.
View Article and Find Full Text PDF3D-structured hydrogel scaffolds are frequently used in tissue engineering applications as they can provide a supportive and biocompatible environment for the growth and regeneration of new tissue. Hydrogel scaffolds seeded with human mesenchymal stem cells (MSCs) can be mechanically stimulated in bioreactors to promote the formation of cartilage or bone tissue. Although and experiments are necessary to understand the biological response of cells and tissues to mechanical stimulation, methods are cost-effective and powerful approaches that can support these experimental investigations.
View Article and Find Full Text PDFPolymers (Basel)
August 2023
A novel approach to manufacture components with integrated conductor paths involves embedding and sintering an isotropic conductive adhesive (ICA) during fused filament fabrication (FFF). However, the molten plastic is deposited directly onto the adhesive path which causes an inhomogeneous displacement of the uncured ICA. This paper presents a 3D printing strategy to achieve a homogeneous cross-section of the conductor path.
View Article and Find Full Text PDFBone healing is a complex process orchestrated by various factors, such as mechanical, chemical and electrical cues. Creating synthetic biomaterials that combine several of these factors leading to tailored and controlled tissue regeneration, is the goal of scientists worldwide. Among those factors is piezoelectricity which creates a physiological electrical microenvironment that plays an important role in stimulating bone cells and fostering bone regeneration.
View Article and Find Full Text PDFCorrection for '3D printed and stimulus responsive drug delivery systems based on synthetic polyelectrolyte hydrogels manufactured digital light processing' by Sonja Vaupel , 2023, DOI: https://doi.org/10.1039/d3tb00285c.
View Article and Find Full Text PDFA novel approach for the long-term medical treatment of the inner ear is the diffusion of drugs through the round window membrane from a patient-individualized, drug-eluting implant, which is inserted in the middle ear. In this study, drug-loaded (10 wt% Dexamethasone) guinea pig round window niche implants (GP-RNIs, ~1.30 mm × 0.
View Article and Find Full Text PDFHydrogels are three-dimensional hydrophilic polymeric networks absorbing up to and even more than 90 wt% of water. These superabsorbent polymers retain their shape during the swelling process while enlarging their volume and mass. In addition to their swelling behavior, hydrogels can possess other interesting properties, such as biocompatibility, good rheological behavior, or even antimicrobial activity.
View Article and Find Full Text PDFDrop-on-demand (DOD) inkjet printing enables exact dispensing and positioning of single droplets in the picoliter range. In this study, we investigate the long-term reproducibility of droplet formation of piezoelectric inkjet printed drug solutions using solvents with different volatilities. We found inkjet printability of EtOH/ASA drug solutions is limited, as there is a rapid forming of drug deposits on the nozzle of the printhead because of fast solvent evaporation.
View Article and Find Full Text PDFThe culverts are used to safely convey water under railways, highways, and overpasses. They are utilized in drainage areas or water channels and in areas where the bearing capacity of soil is low. The design and construction of this crucial infrastructure need to be improved to meet contemporary demands of reliability and affordability.
View Article and Find Full Text PDFTo use regeneratively active cells for cell therapeutic applications, the cells must be isolated from their resident tissues. Different isolation procedures subject these cells to varying degrees of mechanical strain, which can affect the yield of cell number and viability. Knowledge of cell volumetric mass density is important for experimental and numerical optimization of these procedures.
View Article and Find Full Text PDFMaterials (Basel)
November 2022
Enhanced multipoint moulding with additive attachments (EMMA) is a process combining vacuum-assisted multipoint moulding (VAMM) and additively manufactured moulding attachments for carbon fibre reinforced plastics (CFRP) component production. The aim of this initial study is to investigate the mouldability of the additively manufactured attachments on the multipoint tool. For this purpose, two different test specimens were defined, the VAMM machine was adjusted, the attachments were additively built with the robot on the curved silicone interpolation layer and lastly, the CFRP specimens were moulded.
View Article and Find Full Text PDFBeam-column connections are the most critical components of reinforced concrete (RC) structures. They serve as a load transfer path and take a significant portion of the overall shear. Joints in RC structures constructed with no seismic provisions have an insufficient capacity and ductility under lateral loading and can cause the progressive failure of the entire structure.
View Article and Find Full Text PDFHypothesis: Lateral adhesion forces are a fundamental property of liquid-solid interactions and a key aspect of dynamic droplet mobility. But, commonly applied conventional wetting analysis is limited to static and quasi-static methods and cannot resolve dynamic and spatial liquid-solid interactions. However, droplet mobility is assumed to be affected by chemical and topographic surface inhomogeneities introduced by femtosecond laser treatment.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
The objective of this study is the investigation of the transferability of the material extrusion process from conventional to robotic fabrication on silicone build plates for use in Enhanced Multipoint Moulding with Additive Attachments. Therefore, the study is based on two series of experiments. The first series of tests used a conventional plant extended by a silicone construction platform.
View Article and Find Full Text PDFThree-dimensional (3D) printing technology enables the design of personalized scaffolds with tunable pore size and composition. Combining decellularization and 3D printing techniques provides the opportunity to fabricate scaffolds with high potential to mimic native tissue. The aim of this study is to produce novel decellularized bone extracellular matrix (dbECM)-reinforced composite-scaffold that can be used as a biomaterial for bone tissue engineering.
View Article and Find Full Text PDFNovel fabrication techniques based on photopolymerization enable the preparation of complex multi-material constructs for biomedical applications. This requires an understanding of the influence of the used reaction components on the properties of the generated copolymers. The identification of fundamental characteristics of these copolymers is necessary to evaluate their potential for biomaterial applications.
View Article and Find Full Text PDFTemperature is an important abiotic factor that modulates all aspects of ectotherm physiology, including sensitivity to pollutants. Nanoparticles are emerging pollutants in coastal environments, and their potential to cause toxicity in marine organisms is a cause for concern. Here we studied the interactive effects of temperature (including seasonal and experimental warming) on sublethal toxicity of ZnO nanoparticles (nano-ZnO) in a model marine bivalve, the blue mussel Mytilus edulis.
View Article and Find Full Text PDFCaTiO is a promising candidate as a pseudo-piezoelectric scaffold material for bone implantation. In this study, pure and magnesium/iron doped CaTiO are synthesized by sol-gel method and spark plasma sintering. Energy dispersive X-ray mapping confirm the homogenous distribution of doping elements in sintered samples.
View Article and Find Full Text PDFElectroactive hydrogels can be used to influence cell response and maturation by electrical stimulation. However, hydrogel formulations which are 3D printable, electroactive, cytocompatible, and allow cell adhesion, remain a challenge in the design of such stimuli-responsive biomaterials for tissue engineering. Here, a combination of pyrrole with a high gelatin-content oxidized alginate-gelatin (ADA-GEL) hydrogel is reported, offering 3D-printability of hydrogel precursors to prepare cytocompatible and electrically conductive hydrogel scaffolds.
View Article and Find Full Text PDF