Publications by authors named "Hermann Kalwa"

In 2017, four independent publications described the glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as receptor for the growth differentiation factor 15 (GDF15, also MIC-1, NAG-1) with an expression exclusively in the mice brainstem area postrema (AP) and nucleus tractus solitarii (NTS) where it mediates effects of GDF15 on reduction of food intake and body weight. GDF15 is a cell stress cytokine with a widespread expression and pleiotropic effects, which both seem to be in contrast to the reported highly specialized localization of its receptor. This discrepancy prompts us to re-evaluate the expression pattern of GFRAL in the brain and peripheral tissues of mice.

View Article and Find Full Text PDF
Article Synopsis
  • Phospholipid scramblase 4 (PLSCR4) is important for redistributing phospholipids in cell membranes and regulating cell signaling, but its specific function in adipose tissue remains unclear amid the roles of PLSCR1 and PLSCR3.* -
  • PLSCR4 is downregulated in adipose-progenitor cells lacking the tumor suppressor PTEN, which is linked to abnormal fat growth and lipoma development in patients.* -
  • Research shows that decreased PLSCR4 leads to increased lipid accumulation and activation of the PI3K/AKT signaling pathway, suggesting that PLSCR4 might help manage fat cell growth and be relevant in conditions associated with PTEN loss
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality. Considering its very poor prognosis, novel treatment options are urgently needed. MicroRNAs (miRNAs) are involved in the regulation of various physiological and pathological processes.

View Article and Find Full Text PDF

The adhesion G protein-coupled receptor (aGPCR) GPR126/ADGRG6 plays an important role in several physiological functions, such as myelination or peripheral nerve repair. This renders the receptor an attractive pharmacological target. GPR126 is a mechano-sensor that translates the binding of extracellular matrix (ECM) molecules to its N terminus into a metabotropic intracellular signal.

View Article and Find Full Text PDF

The intracellular NLRP3 inflammasome is an important regulator of sterile inflammation. Recent data suggest that inflammasome particles can be released into circulation. The effects of exercise on circulating extracellular apoptosis-associated speck-like protein (ASC) particles and their effects on endothelial cells are not known.

View Article and Find Full Text PDF

The aim of this study was the evaluation of cross-linked gelatin microparticles (cGM) as substrates for osteogenic cell culture to assemble 3D microtissues and their use as delivery system for siRNA to cells in these assemblies. In a 2D transwell cultivation system, we found that cGM are capable to accumulate calcium ions from the surrounding medium. Such a separation of cGM and SaOS-2 ​cells consequently led to a suppressed matrix mineral formation in the SaOS-2 culture on the well bottom of the transwell system.

View Article and Find Full Text PDF

Inflammation driven by intracellular activation of the NLRP3 inflammasome is involved in the pathogenesis of a variety of diseases including vascular pathologies. Inflammasome specks are released into the extracellular compartment from disrupting pyroptotic cells. The potential uptake and function of extracellular NLRP3 inflammasomes in human coronary artery smooth muscle cells (HCASMC) are unknown.

View Article and Find Full Text PDF

Bovine milk-derived extracellular vesicles (EVs) hold promises as oral drug delivery systems. Since EV bioavailability studies are difficult to compare, key factors regarding EV uptake and intestinal permeability remain little understood. This work aims to critically study uptake and transport properties of milk-derived EVs across the intestinal barrier in vitro by standardization approaches.

View Article and Find Full Text PDF

Background: MiRNAs act as negative regulators of gene expression through target mRNA degradation or inhibition of its translation. In cancer, several miRNAs are upregulated and play crucial roles in tumorigenesis, making the inhibition of these oncomiRs an interesting therapeutic approach. This can be achieved by directly complementary single-stranded anti-miRNA oligonucleotides (antimiRs).

View Article and Find Full Text PDF

In the original article, the title of the article is "Restoration of MARCK enhances chemosensitivity in cancer". The authors would like to change the article title to "Restoration of MARCKS enhances chemosensitivity in cancer" by adding a letter "S" to the word MARCK.

View Article and Find Full Text PDF

Background: Medium-chain fatty acids and their 3-hydroxy derivatives are metabolites endogenously produced in humans, food-derived or originating from bacteria. They activate G protein-coupled receptors, including GPR84 and HCA, which regulate metabolism and immune functions. Although both receptors are coupled to G proteins, share at least one agonist and show overlapping tissue expression, GPR84 exerts pro-inflammatory effects whereas HCA is involved in anti-inflammatory responses.

View Article and Find Full Text PDF

Purpose: Increased ATP-binding-cassette (ABC) transporter activity is a major cause of chemotherapy resistance in cancer. The ABC transporter family member ABCB1 is often overexpressed in colorectal cancer (CRC). Phosphatidylinositol-4,5-bisphosphat (PI(4,5)P)-dependent pathways are involved in the regulation of ABCB1 function.

View Article and Find Full Text PDF

The selective microscopic imaging of the plasma membrane and adjacent structures by total internal reflection fluorescence (TIRF) microscopy is a versatile and frequently used technique in cell biology. A reduction of imaging artifacts in objective-type TIRF microscopy can be achieved by circular or multi-spot laser illumination or by using noncoherent light sources that are projected into the back focal plane as a light annulus. Light-emitting diode (LED)-based TIRF excitation is a recent advancement of the latter strategy.

View Article and Find Full Text PDF

Fluorescent tagging of bioactive molecules is a powerful tool to study cellular uptake kinetics and is considered as an attractive alternative to radioligands. In this study, we developed fluorescent histone deacetylase (HDAC) inhibitors and investigated their biological activity and cellular uptake kinetics. Our approach was to introduce a dansyl group as a fluorophore in the solvent-exposed cap region of the HDAC inhibitor pharmacophore model.

View Article and Find Full Text PDF

Total internal reflection fluorescence excitation (TIRF) microscopy allows the selective observation of fluorescent molecules in immediate proximity to an interface between different refractive indices. Objective-type or prism-less TIRF excitation is typically achieved with laser light sources. We here propose a simple, yet optically advantageous light-emitting diode (LED)-based implementation of objective-type TIRF (LED-TIRF).

View Article and Find Full Text PDF

Rationale: Hydrogen peroxide (HO) is a stable reactive oxygen species (ROS) that has long been implicated in insulin signal transduction in adipocytes. However, HO's role in mediating insulin's effects on the heart are unknown.

Objective: We investigated the role of HO in activating insulin-dependent changes in cardiac myocyte metabolic and inotropic pathways.

View Article and Find Full Text PDF

Within the ion channel-coupled purine receptor (P2X) family, P2X7 has gained particular interest because of its role in immune responses and in the growth control of several malignancies. Typical hallmarks of P2X7 are nonselective and noninactivating cation currents that are elicited by high concentrations (0.1-10 mM) of extracellular ATP.

View Article and Find Full Text PDF

Platelets are essential for hemostasis, and thrombocytopenia is a major clinical problem. Megakaryocytes (MKs) generate platelets by extending long processes, proplatelets, into sinusoidal blood vessels. However, very little is known about what regulates proplatelet formation.

View Article and Find Full Text PDF

Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death.

View Article and Find Full Text PDF

In eukaryotic cells, activation of phospholipase C (PLC)-coupled membrane receptors by hormones leads to an increase in the intracellular Ca(2+) concentration [Ca(2+) ]i . Catalytic activity of PLCs results in the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) which opens DAG-sensitive classical transient receptor channels 3, 6, and 7 (TRPC3/6/7), initiating Ca(2+) influx from the extracellular space. Patients with focal segmental glomerulosclerosis (FSGS) express gain-of-function mutants of TRPC6, while others carry loss-of-function mutants of PLCε, raising the intriguing possibility that both proteins interact and might work in the same signalling pathway.

View Article and Find Full Text PDF

S-adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the precursor for the cardiovascular risk factor homocysteine. We have previously identified a link between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase 1 (GPx-1) and endothelial dysfunction. Here we demonstrate a specific mechanism by which hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses GPx-1 expression and leads to inflammatory activation of endothelial cells.

View Article and Find Full Text PDF

ADP activates a family of cell surface receptors that modulate signaling pathways in a broad range of cells. ADP receptor antagonists are widely used to treat cardiovascular disease states. These studies identify a critical role for the stable reactive oxygen species hydrogen peroxide (H2O2) in mediating cellular responses activated by the G protein-coupled P2Y1 receptor for ADP.

View Article and Find Full Text PDF

Endothelial dysfunction is a central hallmark of diabetes. The transcriptional coactivator PGC-1α is a powerful regulator of metabolism, but its role in endothelial cells remains poorly understood. We show here that endothelial PGC-1α expression is high in diabetic rodents and humans and that PGC-1α powerfully blocks endothelial migration in cell culture and vasculogenesis in vivo.

View Article and Find Full Text PDF

Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules. Caveolin-1(null) mice have marked metabolic abnormalities, yet the underlying molecular mechanisms are incompletely understood. We found the redox stress plasma biomarker plasma 8-isoprostane was elevated in caveolin-1(null) mice, and discovered that siRNA-mediated caveolin-1 knockdown in endothelial cells promoted significant increases in intracellular H₂O₂.

View Article and Find Full Text PDF

Nitric oxide (NO) and hydrogen peroxide (H2O2) are synthesized within cardiac myocytes, and both molecules play key roles in modulating cardiovascular responses. However, the interconnections between NO and H2O2 in cardiac myocyte signaling have not been properly understood. Adult mouse cardiac myocytes represent an informative model for the study of receptor-modulated signaling pathways involving reactive oxygen species and reactive nitrogen species.

View Article and Find Full Text PDF