The worldwide invasive insect pest, Matsumura (spotted-wing ), lays eggs in soft and stone fruit before harvest. Hatched larvae cause fruit collapse and significant economic losses. Current control methods rely primarily on foliar insecticide applications, which are not sustainable long-term solutions due to regulatory restrictions and the risk of insecticide resistance developing.
View Article and Find Full Text PDFUnderstanding behavioral rhythms in a pest species can contribute to improving the efficacy of control methods targeting that pest. However, in some species, the behavioral patterns recorded in artificial conditions contrast greatly with observed wild-type behavioral rhythms. In this study, we identify the determinants of daily activity rhythms of the soft and stone fruit pest .
View Article and Find Full Text PDFBackground: The unintentional introduction of Drosophila suzukii (Matsumura) from Asia has caused global economic losses in the soft and stone fruit industries. Pesticide use can have unintended negative impacts on natural enemies, disrupting attempts to incorporate integrated pest management programmes. Generalist predators could potentially act as biocontrol agents of D.
View Article and Find Full Text PDFDrosophila suzukii is a horticultural pest on a global scale which causes both yield and economic losses on a range of soft- and stone-fruit. Tackling this pest is problematic but exploiting behavioral rhythms could increase the impact of control. To do this, a better understanding of behavioral patterns is needed.
View Article and Find Full Text PDFBackground: Drosophila suzukii has dispersed widely from its native Asian range since 2008. Its arrival in the UK is resulting in economic losses in soft- and stone-fruit crops caused by larvae feeding on the flesh of ripening fruit. Although a large amount of research has been directed at controlling this pest, it is presently unknown how this invasive species interacts with native Drosophila species.
View Article and Find Full Text PDFGenome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze.
View Article and Find Full Text PDFCircadian clocks are autonomous daily timekeeping mechanisms that allow organisms to adapt to environmental rhythms as well as temporally organize biological functions. Clock-controlled timekeeping involves extensive regulation of rhythmic gene expression. To date, relatively few clock-associated promoter elements have been identified and characterized.
View Article and Find Full Text PDFCircadian clocks responsible for daily time keeping in a wide range of organisms synchronize to daily temperature cycles via pathways that remain poorly understood. To address this problem from the perspective of the molecular oscillator, we monitored temperature-dependent resetting of four of its core components in the fruitfly Drosophila melanogaster: the transcripts and proteins for the clock genes period (per) and timeless (tim). The molecular circadian cycle in adult heads exhibited parallel responses to temperature-mediated resetting at the levels of per transcript, tim transcript and TIM protein.
View Article and Find Full Text PDFCircadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per.
View Article and Find Full Text PDFThe use of luciferase reporter genes together with luminescence detection has enabled high frequency monitoring of molecular circadian clock function in living tissues. With the help of an intensified CCD camera combined with an inverted epifluorescence microscope, the authors have established a new imaging strategy that makes use of transgenic cell type-specific expression of fluorescent proteins to identify cells of interest for subsequent circadian luminescence recording at single-cell resolution.
View Article and Find Full Text PDFIn yeast, the G1 cyclin Cln3 promotes cell cycle entry by activating the transcription factor SBF. In mammals, there is a parallel system for cell cycle entry in which cyclin dependent kinase (CDK) activates transcription factor E2F/Dp. Here we show that Cln3 regulates SBF by at least two different pathways, one involving the repressive protein Whi5, and the second involving Stb1.
View Article and Find Full Text PDFBackground: Circadian clocks are internal daily time keeping mechanisms that allow organisms to anticipate daily changes in their environment and to organize their behavior and physiology in a coherent schedule. Although circadian clocks use temperature compensation mechanisms to maintain the same pace over a range of temperatures, they are also capable of synchronizing to daily temperature cycles. This study identifies key properties of this process.
View Article and Find Full Text PDFDrosophila melanogaster has a broad geographic range. Daily activity in this species exhibits seasonality such that midday rest expands on long warm days, possibly to avoid desiccation. Comparative analyses show that temperature-dependent control of this behavior is partly linked to patterns of per mRNA splicing that are absent in Drosophila yakuba, a related species native to warmer climates with little seasonal change.
View Article and Find Full Text PDFCircadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions.
View Article and Find Full Text PDFThis review examines the connections between circadian and metabolic rhythms. Examples from a wide variety of well-studied organisms are used to illustrate some of the genetic and molecular pathways linking circadian timekeeping to metabolism. The principles underlying biological timekeeping by intrinsic circadian clocks are discussed briefly.
View Article and Find Full Text PDFThe transcriptional circuits of circadian clocks control physiological and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by entraining the clock circuits and (2) via clock-independent molecular pathways. In this study we examine the relationship between autonomous transcript oscillations and light-driven transcript responses.
View Article and Find Full Text PDFThis article describes methods used to evaluate mRNA expression patterns on microarrays and their application in circadian biology. With the intention of complementing rather than duplicating the existing literature, particular emphasis is placed on experimental design, data analysis techniques, and independent verification. Both comparative and temporal study designs are discussed, and their use in circadian research is illustrated with examples.
View Article and Find Full Text PDFRecent advances in circadian biology are identifying key genes and the molecular clockworks they command. These biochemical systems provide new tools for evaluating clinically observed, intrinsic circadian rhythm sleep disorders. A striking example was last year's discovery of a point mutation in a human clock gene that produces a sleep phase syndrome.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae (budding yeast), commitment to cell division in late G(1) is promoted by the G(1) cyclin Cln3 and its associated cyclin-dependent kinase, Cdc28. We show here that all known aspects of the function of Cln3 in G(1) phase, including control of cell size, pheromone sensitivity, cell cycle progress, and transcription, require the protein Swi6. Swi6 is a component of two related transcription factors, SBF and MBF, which are known to regulate many genes at the G(1)-S transition.
View Article and Find Full Text PDF