IEEE Trans Image Process
April 2024
In modern neuroscience, observing the dynamics of large populations of neurons is a critical step of understanding how networks of neurons process information. Light-field microscopy (LFM) has emerged as a type of scanless, high-speed, three-dimensional (3D) imaging tool, particularly attractive for this purpose. Imaging neuronal activity using LFM calls for the development of novel computational approaches that fully exploit domain knowledge embedded in physics and optics models, as well as enabling high interpretability and transparency.
View Article and Find Full Text PDFLight-field microscopy (LFM) enables fast, light-efficient, volumetric imaging of neuronal activity with calcium indicators. Calcium transients differ in temporal signal-to-noise ratio (tSNR) and spatial confinement when extracted from volumes reconstructed by different algorithms. We evaluated the capabilities and limitations of two light-field reconstruction algorithms for calcium fluorescence imaging.
View Article and Find Full Text PDFLight-field microscopy (LFM) is a type of all-optical imaging system that is able to capture 4D geometric information of light rays and can reconstruct a 3D model from a single snapshot. In this paper, we propose a new 3D localization approach to effectively detect 3D positions of neuronal cells from a single light-field image with high accuracy and outstanding robustness to light scattering. This is achieved by constructing a depth-aware dictionary and by combining it with convolutional sparse coding.
View Article and Find Full Text PDF