Publications by authors named "Herman Tenor"

There is a pressing medical need for improved treatments in skin fibrosis including keloids and hypertrophic scars (HTS). This study aimed to characterize the role of phosphodiesterase 4 (PDE4), specifically PDE4B in fibrotic skin remodeling in vitro and in vivo. In vitro, effects of PDE4A-D (Roflumilast) or PDE4B (siRNA) inhibition on TGFβ1-induced myofibroblast differentiation and dedifferentiation were studied in normal (NHDF) and keloid (KF) human dermal fibroblasts.

View Article and Find Full Text PDF
Article Synopsis
  • Fibrotic remodeling is a common issue in chronic lung diseases like COPD and asthma, leading to excessive collagen production and inflammation in the lungs.
  • Preclinical studies indicate that phosphodiesterase 4 (PDE4) inhibitors, such as roflumilast, may help reduce inflammation and fibrosis in these respiratory conditions.
  • Research using NMR metabolic profiling on murine lung tissue shows that roflumilast significantly alters the metabolic changes caused by bleomycin-induced fibrosis, preventing increases in harmful metabolites and suggesting potential therapeutic benefits.
View Article and Find Full Text PDF

Background: Cigarette smoking contributes to epithelial-mesenchymal transition (EMT) in COPD small bronchi as part of the lung remodeling process. We recently observed that roflumilast N-oxide (RNO), the active metabolite of the PDE4 inhibitor roflumilast, prevents cigarette smoke-induced EMT in differentiated human bronchial epithelial cells. Further, statins were shown to protect renal and alveolar epithelial cells from EMT.

View Article and Find Full Text PDF

Background: Epithelial to mesenchymal transition (EMT) is under discussion as a potential mechanism of small airway remodelling in COPD. In bronchial epithelium of COPD and smokers markers of EMT were described. In vitro, EMT may be reproduced by exposing well-differentiated human bronchial epithelial cells (WD-HBEC) to cigarette smoke extract (CSE).

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes acute exacerbations in COPD and asthma. RSV infects bronchial epithelial cells (HBE) that trigger RSV associated lung pathology. This study explores whether the phosphodiesterase 4 (PDE4) inhibitor Roflumilast N-oxide (RNO), alters RSV infection of well-differentiated HBE (WD-HBE) in vitro.

View Article and Find Full Text PDF