Amylin receptors (AMYRs), heterodimers of the calcitonin receptor (CTR) and one of three receptor activity-modifying proteins, are promising obesity targets. A hallmark of AMYR activation by Amy is the formation of a 'bypass' secondary structural motif (residues S19-P25). This study explored potential tuning of peptide selectivity through modification to residues 19-22, resulting in a selective AMYR agonist, San385, as well as nonselective dual amylin and calcitonin receptor agonists (DACRAs), with San45 being an exemplar.
View Article and Find Full Text PDFThe accurate prediction of protein-ligand binding affinity belongs to one of the central goals in computer-based drug design. Molecular dynamics (MD)-based free energy calculations have become increasingly popular in this respect due to their accuracy and solid theoretical basis. Here, we present a combined study which encompasses experimental and computational studies on two series of factor Xa ligands, which enclose a broad chemical space including large modifications of the central scaffold.
View Article and Find Full Text PDFNicotinamide N-methyltransferase (NNMT) is a metabolic regulator that catalyzes the methylation of nicotinamide (Nam) using the co-factor S-adenosyl-L-methionine to form 1-methyl-nicotinamide (MNA). Overexpression of NNMT and the presence of the active metabolite MNA is associated with a number of diseases including metabolic disorders. We conducted a high-throughput screening campaign that led to the identification of a tricyclic core as a potential NNMT small molecule inhibitor series.
View Article and Find Full Text PDFNicotinamide--methyltransferase (NNMT) is a cytosolic enzyme catalyzing the transfer of a methyl group from -adenosyl-methionine (SAM) to nicotinamide (Nam). It is expressed in many tissues including the liver, adipose tissue, and skeletal muscle. Its expression in several cancer cell lines has been widely discussed in the literature, and recent work established a link between NNMT expression and metabolic diseases.
View Article and Find Full Text PDFNonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease that can lead to irreversible liver cirrhosis and cancer. Early diagnosis of NASH is vital to detect disease before it becomes life-threatening, yet noninvasively differentiating NASH from simple steatosis is challenging. Herein, bifunctional probes have been developed that target the hepatocyte-specific asialoglycoprotein receptor (ASGPR), the expression of which decreases during NASH progression.
View Article and Find Full Text PDFPhysiological processes rely on initial recognition events between cellular components and other molecules or modalities. Biomolecules can have multiple sites or mode of interaction with other molecular entities, so that a resolution of the individual binding events in terms of spatial localization as well as association and dissociation kinetics is required for a meaningful description. Here we describe a trichromatic fluorescent binding- and displacement assay for simultaneous monitoring of three individual binding sites in the important transporter and binding protein human serum albumin.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) are currently leading products in the global biopharmaceutical market. Multiple mAbs are in clinical development and novel biotherapeutic protein scaffolds, based on the canonical immunoglobulin G (IgG) fold, are emerging as treatment options for various medical conditions. However, fast approvals for biotherapeutics are challenging to achieve, because of difficult scientific development procedures and complex regulatory processes.
View Article and Find Full Text PDFEssentials Consensus sequence and biochemical data suggest a Na -site in the factor (F) IXa protease domain. X-ray structure of the FIXa EGF2/protease domain at 1.37 Å reveals a Na -site not observed earlier.
View Article and Find Full Text PDFNicotinamide N-methyltransferase (NNMT) is a cytosolic enzyme that catalyzes the transfer of a methyl group from the co-factor S-adenosyl-L-methionine (SAM) onto the substrate, nicotinamide (NA) to form 1-methyl-nicotinamide (MNA). Higher NNMT expression and MNA concentrations have been associated with obesity and type-2 diabetes. Here we report a small molecule analog of NA, JBSNF-000088, that inhibits NNMT activity, reduces MNA levels and drives insulin sensitization, glucose modulation and body weight reduction in animal models of metabolic disease.
View Article and Find Full Text PDFNicotinamide N-methyltransferase (NNMT) has been linked to obesity and diabetes. We have identified a novel nicotinamide (NA) analog, compound 12 that inhibited NNMT enzymatic activity and reduced the formation of 1-methyl-nicotinamide (MNA), the primary metabolite of NA by ∼80% at 2 h when dosed in mice orally at 50 mg/kg.
View Article and Find Full Text PDFA single high-affinity fatty acid binding site in the important human transport protein serum albumin (HSA) is identified and characterized using an NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl)-C fatty acid. This ligand exhibits a 1:1 binding stoichiometry in its HSA complex with high site-specificity. The complex dissociation constant is determined by titration experiments as well as radioactive equilibrium dialysis.
View Article and Find Full Text PDFNicotinamide N-methyltransferase (NNMT) is a S-adenosyl-l-methionine (SAM)-dependent enzyme that catalyzes N-methylation of nicotinamide (NA) and other pyridines to form N-methyl pyridinium ions. Here we report the first ternary complex X-ray crystal structures of monkey NNMT and mouse NNMT in bound form with the primary endogenous product, 1-methyl nicotinamide (MNA) and demethylated cofactor, S-adenosyl-homocysteine (SAH) determined at 2.30 Å and 1.
View Article and Find Full Text PDFPreviously disclosed TAFIa inhibitors having a urea zinc-binding motif were used as the starting point for the development of a novel class of highly potent inhibitors having a sulfamide zinc-binding motif. High-resolution X-ray cocrystal structures were used to optimize the structures and reveal a highly unusual sulfamide configuration. A selected sulfamide was profiled in vitro and in vivo and displayed a promising ADMET profile.
View Article and Find Full Text PDFMature thrombin activatable fibrinolysis inhibitor (TAFIa) is a carboxypeptidase that stabilizes fibrin clots by removing C-terminal arginines and lysines from partially degraded fibrin. Inhibition of TAFIa stimulates the degradation of fibrin clots and may help to prevent thrombosis. Applying a lead finding approach based on literature-mining, we discovered that anabaenopeptins, cyclic peptides produced by cyanobacteria, were potent inhibitors of TAFIa with IC50 values as low as 1.
View Article and Find Full Text PDFQuantifying the properties of macromolecules is a prerequisite for understanding their roles in biochemical processes. One of the less-explored geometric features of macromolecules is molecular surface irregularity, or 'roughness', which can be measured in terms of fractal dimension (). In this study, we demonstrate that surface roughness correlates with ligand binding potential.
View Article and Find Full Text PDFAnabaenopeptins isolated from cyanobacteria were identified as inhibitors of carboxypeptidase TAFIa. Cocrystal structures of these macrocyclic natural product inhibitors in a modified porcine carboxypeptidase B revealed their binding mode and provided the basis for the rational design of small molecule inhibitors with a previously unknown central urea motif. Optimization based on these design concepts allowed for a rapid evaluation of the SAR and delivered potent small molecule inhibitors of TAFIa with a promising overall profile.
View Article and Find Full Text PDFStructure-based drug design (SBDD) is a powerful and widely used approach to optimize affinity of drug candidates. With the recently introduced INPHARMA method, the binding mode of small molecules to their protein target can be characterized even if no spectroscopic information about the protein is known. Here, we show that the combination of the spin-diffusion-based NMR methods INPHARMA, trNOE, and STD results in an accurate scoring function for docking modes and therefore determination of protein-ligand complex structures.
View Article and Find Full Text PDFThe lysosomal serine carboxypeptidase cathepsin A is involved in the breakdown of peptide hormones like endothelin and bradykinin. Recent pharmacological studies with cathepsin A inhibitors in rodents showed a remarkable reduction in cardiac hypertrophy and atrial fibrillation, making cathepsin A a promising target for the treatment of heart failure. Here we describe the crystal structures of activated cathepsin A without inhibitor and with two compounds that mimic the tetrahedral intermediate and the reaction product, respectively.
View Article and Find Full Text PDFWe present the discovery of low molecular weight inhibitors of human immunodeficiency virus 1 (HIV-1) protease subtype B that were identified by structure-based virtual screening as ligands of an allosteric surface cavity. For pocket identification and prioritization, we performed a molecular dynamics simulation and observed several flexible, partially transient surface cavities. For one of these presumable ligand-binding pockets that are located in the so-called "hinge region" of the identical protease chains, we computed a receptor-derived pharmacophore model, with which we retrieved fragment-like inhibitors from a screening compound pool.
View Article and Find Full Text PDFCompound 15 (SAR107375), a novel potent dual thrombin and factor Xa inhibitor resulted from a rational optimization process. Starting from compound 14, with low factor Xa and modest anti-thrombin inhibitory activities (IC50's of 3.5 and 0.
View Article and Find Full Text PDFThe lysosomal serine carboxypeptidase CatA has a very important and well-known structural function as well as a, so far, less explored catalytic function. A complete loss of the CatA protein results in the lysosomal storage disease galactosialidosis caused by intralysosomal degradation of β-galactosidase and neuraminidase 1. However, mice with a catalytically inactive CatA enzyme show no signs of this disease.
View Article and Find Full Text PDFCathepsin A (CatA) is a serine carboxypeptidase distributed between lysosomes, cell membrane, and extracellular space. Several peptide hormones including bradykinin and angiotensin I have been described as substrates. Therefore, the inhibition of CatA has the potential for beneficial effects in cardiovascular diseases.
View Article and Find Full Text PDF