Publications by authors named "Herman S Mansur"

Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up").

View Article and Find Full Text PDF

Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory.

View Article and Find Full Text PDF

The objective of this study was to validate an indirect enzyme-linked immunoassay (iELISA) using the recombinant proteins, malate dehydrogenase (MDH) and superoxide dismutase (SOD) [CuZn], as antigens and to evaluate its ability to discriminate antibodies produced by vaccination from those induced by infection in the diagnosis of bovine brucellosis. Sera from six groups were evaluated: G1 - culture-positive animals (52 serum samples) (naturally infected); G2 - non-vaccinated animals (28 serum samples) positive in RBT (Rose Bengal test) and 2ME (2-mercaptoethanol test) selected from brucellosis-positive herds; G3 - animals from a brucellosis-free area (32 serum samples); G4 - S19 vaccinated heifers (114 serum samples); G5 - RB51 vaccinated heifers (60 serum samples); G6 - animals inoculated with inactivated Yersinia enterocolitica O:9 (42 serum samples). Diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were estimated using the frequentist approach and the confidence interval (CI) (95%) calculated by the Clopper-Pearson (exact) method.

View Article and Find Full Text PDF

Among almost 200 types of cancers, glioma is considered one of the most common forms of malignant tumors located in the central nervous system (CNS). Glioblastoma (GBM), one of the deadliest types of brain cancer, remains one of the challenges faced by oncologists. Thus, smartly designed nanomaterials biofunctionalized with polypeptides can offer disruptive strategies relying on the earliest possible diagnosis ("") combined with more efficient therapies for fighting cancer cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary brain cancer in adults. Despite the remarkable advancements in recent years in the realm of cancer diagnosis and therapy, regrettably, GBM remains the most lethal form of brain cancer. In this view, the fascinating area of nanotechnology has emerged as an innovative strategy for developing novel nanomaterials for cancer nanomedicine, such as artificial enzymes, termed nanozymes, with intrinsic enzyme-like activities.

View Article and Find Full Text PDF

The burden of chronic wounds is growing due to the increasing incidence of trauma, aging, and diabetes, resulting in therapeutic problems and increased medical costs. Thus, this study reports the synthesis and comprehensive characterization of water-responsive hybrid hydrogels based on carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) using citric acid (CA) as the chemical crosslinking agent, with tunable physicochemical properties suitable to be applied as a wound dressing for soft tissue engineering applications. They were produced through an eco-friendly process under mild conditions.

View Article and Find Full Text PDF

The contamination and pollution of wastewater with a wide diversity of chemical, microbiological, and hazardous substances is a field of raising environmental concern. In this study, we developed, for the first time, new hybrid multifunctional nanoplexes composed of ZnS semiconductor quantum dots (ZnS QDs) chemically biofunctionalized with epsilon-poly-l-lysine (ɛPL) and coupled with magnetic iron oxide nanoparticles (MION, FeO) stabilized by carboxymethylcellulose (CMC) for the photodegradation (ZnS) of organic molecules and antibacterial activity (ɛPL) with a potential of recovery by an external magnetic field (FeO). These nanosystems, which were synthesized entirely through a green aqueous process, were comprehensively characterized regarding their physicochemical properties combined with spectroscopic and morphological features.

View Article and Find Full Text PDF

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy.

View Article and Find Full Text PDF

Among the most lethal forms of cancer, malignant brain tumors persist as one of the greatest challenges faced by oncologists, where nanotechnology-driven theranostics can play a critical role in developing novel polymer-based supramolecular nanoarchitectures with multifunctional and multi-modal characteristics to fight cancer. However, it is virtually a consensus that, besides the complexity of active delivering anticancer drugs by the nanocarriers to the tumor site, the current evaluation methods primarily relying on in vitro assays and in vivo animal models have been accounted for the low translational effectiveness to clinical applications. In this view, the chick chorioallantoic membrane (CAM) assay has been increasingly recognized as one of the best preclinical models to study the effects of anticancer drugs on the tumor microenvironment (TME).

View Article and Find Full Text PDF

Herein, we validated novel functionalized hybrid semiconductor bioconjugates made of fluorescent quantum dots (QD) with the surface capped by chitosan (polysaccharide) and chemically modified with O-phospho-L-serine (OPS) that are biocompatible with different human cell sources. The conjugation with a directing signaling molecule (OPS) allows preferential accumulation in human bone mesenchymal stromal cells (HBMSC). The chitosan (Chi) shell with the fluorescent CdS core was characterized by spectroscopical (UV spectrophotometry and photoluminescence), by morphological techniques (Transmission Electron Microscopy (TEM)) and showed small size (ø 2.

View Article and Find Full Text PDF

Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR).

View Article and Find Full Text PDF

Malignant brain tumors remain one of the greatest challenges faced by health professionals and scientists among the utmost lethal forms of cancer. Nanotheranostics can play a pivotal role in developing revolutionary nanoarchitectures with multifunctional and multimodal capabilities to fight cancer. Mitochondria are vital organelles to eukaryotic cells, which have been recognized as a significant target in cancer therapy where, by damaging the mitochondria, it will cause irreparable cell death or apoptosis.

View Article and Find Full Text PDF

Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (FeO, MION) and cobalt-doped magnetite (Co -MION, = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in FeO nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses.

View Article and Find Full Text PDF

The fast growth of industrialization combined with the increasing population has led to an unparalleled demand for providing water in a safe, reliable, and cost-effective way, which has become one of the biggest challenges of the twenty-first century faced by global society. The application of nanotechnology in water treatment and pollution cleanup is a promising alternative in order to overcome the current limitations. In particular, the application of magnetic iron oxide nanoparticles (MIONs) for environmental remediation has currently received remarkable attention due to its unique combination of physicochemical and magnetic properties.

View Article and Find Full Text PDF

The earliest possible diagnosis and understanding of the infection mechanisms play a crucial role in the outcome of fighting viral diseases. Thus, we designed and developed for the first time, novel bioconjugates made of Ag-In-S@ZnS (ZAIS) fluorescent quantum dots coupled with ZIKA virus covalent amide bond with carboxymethylcellulose (CMC) biopolymer for labeling and bioimaging the virus-host cell interactions mechanisms through confocal laser scanning microscopy. This work offers relevant insights regarding the profile of the ZIKA virus-nanoparticle conjugates interactions with VERO cells, which can be applied as a nanoplatform to elucidate the infection mechanisms caused by this viral disease.

View Article and Find Full Text PDF

Although the field of oncology nanomedicine has shown indisputable progress in recent years, cancer remains one of the most lethal diseases, where the early diagnosis plays a pivotal role in the patient's prognosis and therapy. Herein, we report for the first time, the synthesis of biocompatible nanostructures composed of Cu-In-S and Cu-In-S/ZnS nanoparticles functionalized with carboxymethylcellulose biopolymer produced by a green aqueous process. These inorganic-organic colloidal nanohybrids developed supramolecular architectures stabilized by chemical functional groups of the polysaccharide shell with the fluorescent semiconductor nanocrystal core, which were extensively characterized by several morphological and spectroscopical techniques.

View Article and Find Full Text PDF

Despite the undeniable advances in recent decades, cancer remains one of the deadliest diseases of the current millennium, where the triple-negative breast cancer (TNBC) is very aggressive, extremely metastatic, and resistant to conventional chemotherapy. The nanotheranostic approach focusing on targeting membrane receptors often expressed at abnormal levels by cancer cells can be a strategic weapon for fighting malignant tumors. Herein, we introduced a novel "all-in-one nanosoldier" made of colloidal hybrid nanostructures, which were designed for simultaneously targeting, imaging, and killing TNBC cells.

View Article and Find Full Text PDF

Disturbances that affect the inside of the eyeball tend to be highly harmful since they compromise the homeostasis of this organ. Alongside this, the eyeball has several anatomical barriers that prevent the entry of substances. This way, diseases that affect the retina are among those that present greater difficulty in the treatment.

View Article and Find Full Text PDF

In this work, it was developed three-dimensional (3D) porous hydrogel sponges produced by the freeze-dried process using chitosan polymer functionalized by 11-mercaptoundecanoic acid (MUA). These chitosan-based sponges were used as cationic adsorbents for the removal of anionic methyl orange (MO) dye, simulating a model organic pollutant in aqueous medium. Moreover, these porous 3D constructs were also evaluated as 'antibiotic-free' antibacterial materials against gram-negative and gram-positive bacteria, and respectively, which were used as model pathogens possibly found in contaminated hospital discharges.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the utmost aggressive and lethal primary brain cancer, which has a poor prognosis and remains virtually incurable. Nanomedicine with emerging disruptive nanotechnology alternatives, including designed supramolecular nanohybrids has excellent potential as multimodal tools against cancer by combining nanomaterials, biomacromolecules, and drugs. Thus, we developed and constructed for the first time quantum dot-biopolymer-drug nanohybrids based on host-guest chemistry for simultaneous bioimaging, targeting, and anti-cancer drug delivery against GBM cells in vitro.

View Article and Find Full Text PDF

Although noticeable scientific and technological progress, cancer remains one of the deadliest diseases worldwide and advancements in diagnosis, targeting and treating cancer cells are an urgency. In this study, we designed and synthesized novel amino acid and polypeptide modified polysaccharide derivatives associated with fluorescent nanomaterials for producing nanohybrids with functionalities for bioimaging and cell penetrating. Carboxymethylcellulose (CMCel) was chemically biofunctionalized with L-cysteine (CMCelCys) or poly-L-arginine (CMCelPolyArg) and the conjugates were used as capping ligands for synthesizing fluorescent AgInS quantum dots (AIS-QDs) in aqueous colloidal media.

View Article and Find Full Text PDF

Novel core-shell superparamagnetic nanofluids composed of magnetic iron oxide (FeO, MION) and cobalt-doped (CoFeO, Co-MION) nanoparticles functionalized with carboxymethyl cellulose (CMC) ligands were designed and produced via green colloidal aqueous process. The effect of the degree of substitution (DS = 0.7 and 1.

View Article and Find Full Text PDF

The present work describes in vitro and in vivo behaviors of thermosensitive composite hydrogels based on polymers/bioactive glass nanoparticles. Assays in SBF (simulated body fluid) solution showed that loss of hydrogel mass in vitro was decreased by 4.3% when bioactive glass nanoparticles (nBG) were incorporated, and confirmed the bioactivity of nBG containing hydrogels.

View Article and Find Full Text PDF