Animal models of mild traumatic brain injury (mTBI) provide opportunity to examine the extent to which dietary interventions can be used to improve recovery after injury. Animal studies also suggest that matrix metalloproteinases (MMPs) play a role in tissue remodeling post-TBI. Because dietary zinc (Zn) improved recovery in nonblast mTBI models, and the MMPs are Zn-requiring enzymes, we evaluated the effects of low- (LoZn) and adequate-Zn (AdZn) diets on MMP expression and behavioral responses, subsequent to exposure to a single blast.
View Article and Find Full Text PDFLow volatile organophosphorous nerve agents such as VX, will most likely enter the body via the skin. The pharmacokinetics of drugs such as oximes, atropine and diazepam, are not aligned with the variable and persistent toxicokinetics of the agent. Repeated administration of these drugs showed to improve treatment efficacy compared to a single injection treatment.
View Article and Find Full Text PDFThe aim of the present study was to investigate toxic effects following phosgene exposure of human epithelial lung cells (A549) in vitro using a CULTEX® system. In particular, toxic effects regarding early biomarkers emerging during the latency period following exposure might be of great value for medical treatment. Cells cultured on semi-permeable membranes were directly exposed at the liquid-air interface to different concentrations of phosgene, or dry medical air.
View Article and Find Full Text PDFOne of the shortcomings of current treatment of nerve agent poisoning is that oximes hardly penetrate the blood-brain barrier (BBB), whereas nerve agents easily do. Increasing the concentration of oximes in the brain, would therefore provide an attractive approach to improve medical countermeasures. An explanation for limited penetration might be that oximes are substrates for the active P-glycoprotein (Pgp) efflux transporter located in the BBB.
View Article and Find Full Text PDFThe rapid onset of toxic signs following nerve agent intoxication and the apprehension that current therapy (atropine, oxime, diazepam) may not prevent brain damage, requires supportive pretreatment. Since the current pretreatment drug pyridostigmine fails in protecting brain-AChE, more effective pretreatment is necessary. A main focus of present-day pretreatment research is on bioscavengers, another is on centrally active reversible AChE-inhibitors combined with drugs showing anti-cholinergic, anti-glutamatergic, neuroprotective and non-sedating GABA-ergic activity.
View Article and Find Full Text PDFCurrent treatment of organophosphate poisoning is insufficient, and survivors may suffer from long-lasting adverse effects, such as cognitive deficits and sleep-wake disturbances. In the present study, we aimed at developing a guinea pig model to investigate the benefits of immediate and delayed stand-alone therapy on the development of clinical signs, EEG, heart rate, respiration and AChE activity in blood and brain after soman poisoning. The model allowed the determination of the therapeutic effects at the short-term of obidoxime, atropine and physostigmine.
View Article and Find Full Text PDFThe nerve agent VX is most likely to enter the body via liquid contamination of the skin. After percutaneous exposure, the slow uptake into the blood, and its slow elimination result in toxic levels in plasma for a period of several hours. Consequently, this has implications for the development of toxic signs and for treatment onset.
View Article and Find Full Text PDFThe validity of the common marmoset (Callithrix jacchus) as a model for human disease depends on the development of parameters with clinical relevance. We tested the effect of treatment with MPTP in two newly developed non-invasive motor behavioral paradigms in the context of Parkinson's disease. The "Tower" was designed to quantify the marmoset's natural jumping behavior as a measure for akinesia, the "Hourglass" to test the marmoset's natural righting reflex as measure for rigidity, analogous to axial motor behavior in humans.
View Article and Find Full Text PDFTo date, treatment of organophosphate (OP) poisoning shows several shortcomings, and OP-victims might suffer from lasting cognitive deficits and sleep-wake disturbances. In the present study, long-term effects of soman poisoning on learning ability, memory and neurogenesis were investigated in rats, treated with the anticholinergic atropine and the oxime HI-6 for reactivation of soman-inhibited acetylcholinesterase. We also investigated whether sub-chronic treatment with the reported neurogenesis enhancer olanzapine would stimulate neurogenesis and possibly normalize the anticipated long-term deleterious effects of soman intoxication.
View Article and Find Full Text PDFThe nerve agent VX has a variable and delayed absorption through the skin, which may have implications for treatment regimens. In the present study, central and peripheral effects of percutaneous VX intoxication were investigated in hairless guinea pigs. Although onset times of clinical signs varied considerably, the relative onset times of signs of poisoning were shown to have a predictive value for survival time.
View Article and Find Full Text PDFOrganophosphate poisoning can result in seizures and subsequent neuropathology. In order to improve treatment strategies in organophosphate intoxication, the relationship between acetylcholinesterase inhibition, extracellular levels of acetylcholine, and electroencephalogram (EEG) changes was investigated during local perfusion of the reversible acetylcholinesterase inhibitor neostigmine in the hippocampus and striatum of freely moving rats. Acetylcholinesterase activity and acetylcholine levels were measured by microdialysis, and EEG signals were recorded from an electrode placed near the microdialysis probe.
View Article and Find Full Text PDFThe main purpose of this pilot study was to estimate the lowest observable adverse effect level (LOAEL) for the electroencephalogram (EEG) upon long-term, low-level exposure of vehicle-pretreated and pyridostigmine-pretreated marmoset monkeys to sarin vapour. This is the C.t value (t=5 h) of exposure at which the EEG becomes significantly different from that resulting from air exposure of the same animals.
View Article and Find Full Text PDFAirborne exposure to lung-toxic agents may damage the lung surfactant system and epithelial and endothelial cells, resulting in a life-threatening pulmonary edema that is known to be refractory to treatment. The aim of this study was to investigate in rats (1) the respiratory injury caused by nose-only exposure to perfluoroisobutene (PFIB), and (2) the therapeutic efficacy of a treatment at 4 and/or 8 h after exposure consisting of the natural surfactant Curosurf and/or the anti-inflammatory drug N-acetylcysteine (NAC). For that purpose, the following parameters were examined: respiratory frequency (RF), lung compliance (Cdyn), airway resistance (Raw), lung wet weight (LWW), airway histopathology; and in brochoalveolar lavage (BAL) fluid, total protein, total phospholipid, cell count and differentiation, and changes in the surface tension of the BAL fluid.
View Article and Find Full Text PDFThe purpose of the present study was to investigate: (1) the acute effects of sulfur mustard on airway, lung, and surface tension of bronchoalveolar lavage fluid (BALfluid) in guinea pigs following intratracheal (i.t.) exposure to 1LD50 of an aerosolized solution of sulfur mustard in saline, and (2) the therapeutic efficacy of i.
View Article and Find Full Text PDFThe purpose of this pilot study was to indicate, for low-level exposure of conscious guinea pigs and marmoset monkeys to sarin vapour in air, the lowest-observable-adverse-effect level (LOAEL) of sarin for miosis. This is the concentration x time (C.t) value (t = 5 h) of exposure at which miosis becomes significant.
View Article and Find Full Text PDFThe application of adenosine A(1) receptor agonists in regard to cerebral disorders is hampered by serious cardiovascular side effects. This problem might be circumvented by using low-efficacy agonists (partial agonists). The objective of the present study was to characterize the effects of the full agonist N(6)-cyclopentyladenosine (CPA) and its low-efficacy derivatives 3'-deoxy-CPA (3-DCPA), 8-propylamino-CPA (8-PCPA) and 8-butylamino-CPA (8-BCPA) on the 4-aminopyridine (4AP)-evoked release of [3H]-acetylcholine in a rat striatal synaptosomal system.
View Article and Find Full Text PDFThe objective of the present study was to determine (1) the influence of sarin poisoning (144 microg/kg s.c.) on the pharmacokinetics and brain distribution of the adenosine A1 receptor partial agonist 2'-deoxy-N6-cyclopentyladenosine (2'dCPA), and (2) the effect of 2'dCPA (20 mg/kg i.
View Article and Find Full Text PDFMortality and occurrence of cholinergic symptoms upon sarin intoxication (144 micro g/kg s.c., approximately 2 x LD50) in rats is completely prevented by treatment with the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA, 2 mg/kg i.
View Article and Find Full Text PDFOrganophosphate poisoning can result in seizures and subsequent neuropathology. One possible therapeutic approach would be to employ adenosine A(1) receptor agonists, which have already been shown to have protective effects against organophosphate poisoning. Using an in vitro model of organophosphate-induced seizures, we have investigated the ability of several adenosine A(1) receptor agonists to inhibit epileptiform activity induced by the organophosphate sarin, in the CA1 stratum pyramidale of the guinea pig hippocampal slice.
View Article and Find Full Text PDFRealistic scenarios for low-level exposure to nerve agents will often involve exposures over several hours to extremely low doses of agent. In order to expose animals to the lowest controllable concentrations of agent and to increase exposure times until a lowest observable effect level (LOEL) becomes measurable, a validated system was developed for exposing conscious animals to 0.05-1.
View Article and Find Full Text PDFThe objective of this study was to characterize the effects of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) and its low efficacy derivatives 2'-deoxy-CPA (2DCPA), 3'-deoxy-CPA (3DCPA), 8-ethylamino-CPA (8ECPA) and 8-butylamino-CPA (8BCPA) on the release of acetylcholine (ACh) using intrastriatal microdialysis. These low efficacy agonists exhibited lower effects on the cardiovascular system than CPA. A concentration-dependent inhibition of ACh release was observed with a maximum of 60.
View Article and Find Full Text PDFThe objective of the present study was to develop a kinetics of pharmacodynamics model to properly describe and investigate the in vivo interaction between the selective adenosine A(1) agonist N(6)-cyclopentyladenosine (CPA), acetylcholinesterase (AChE) in blood and brain, and the AChE-inhibitor sarin (isopropylmethylphosphonofluoridate). The direct interaction of CPA (2 microM) on the inhibition of AChE by sarin was studied in vitro in heparinized rat blood and in 10% (w/v) brain homogenate. CPA did not directly influence the sarin-mediated inactivation of AChE in either system.
View Article and Find Full Text PDFThe objective of the present study was to characterize the adenosine A(1) receptor allosteric enhancing and antagonistic actions of (2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)(3,4-dichlorophenyl)methanone (LUF 5484) and (2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)phenyl]methanone (PD 81,723) on striatal acetylcholine release. Upon local administration in conscious rats, LUF 5484 or PD 81,723 caused a concentration-dependent increase of extracellular acetylcholine levels of approximately 40%, which was similar to that obtained by the selective adenosine A(1) receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine (8CPT) and N(6)-cyclopentyl-9-methyladenine (N0840). In interaction experiments, LUF 5484 or PD 81,723 did not change the inhibition of acetylcholine release by the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), whereas 8CPT caused an eightfold rightward shift.
View Article and Find Full Text PDFThe objective of the present study was to investigate whether reduction of central acetylcholine (ACh) accumulation by adenosine receptor agonists could serve as a generic treatment against organophosphate (OP) poisoning. The OPs studied were tabun ( O-ethyl- N-dimethylphosphoramidocyanidate), sarin (isopropylmethylphosphonofluoridate), VX ( O-ethyl- S-2-diisopropylaminoethylmethylphosphonothiolate) and parathion ( O, O-diethyl- O-(4-nitrophenyl)phosphorothioate). The efficacy of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) against an OP intoxication was examined on the basis of the occurrence of clinical symptoms that are directly associated with such intoxication.
View Article and Find Full Text PDF