Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A.
View Article and Find Full Text PDFThe lipopolysaccharide of Pseudomonas aeruginosa O-12 was studied by strong alkaline and mild acid degradations and dephosphorylation followed by fractionation of the products by GPC and high-performance anion-exchange chromatography and analyses by ESI FT-MS and NMR spectroscopy. The structures of the lipopolysaccharide core and the O-polysaccharide repeating unit were elucidated and the site and the configuration of the linkage between the O-polysaccharide and the core established. The core was found to be randomly O-acetylated, most O-acetyl groups being located on the terminal rhamnose residue of the outer core region.
View Article and Find Full Text PDFA phosphorylated core-lipid A backbone oligosaccharide that carries a disaccharide remainder of the first O-antigen repeating unit was derived by strong alkaline degradation following mild hydrazinolysis of the lipopolysaccharide of Pseudomonas aeruginosa immunotype 4 (serogroup O-1). The structure of the oligosaccharide was determined using ESI MS and NMR spectroscopy and it was demonstrated that 2-acetamido-2,6-dideoxy-D-glucose is the first monosaccharide of the O-polysaccharide that is linked to the LPS core. These data define the structure of the biological repeating unit of the O-antigen.
View Article and Find Full Text PDF