The mechanosensitive channels of large conductance (MscL) are bacterial membrane proteins that serve as last resort emergency release valves in case of severe osmotic downshock. Sensing bilayer tension, MscL channels are sensitive to changes in the bilayer environment and are, therefore, an ideal test case for exploring membrane protein coupling. Here, we use high-throughput coarse-grained molecular dynamics simulations to characterize MscL gating kinetics in different bilayer environments under the influence of alcohols.
View Article and Find Full Text PDFWith today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices covers sufficiently many dimerization and dissociation events, their binding free energy is readily derived from the fraction of time during which the two helices are observed in dimeric form.
View Article and Find Full Text PDFThis article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation.
View Article and Find Full Text PDFAzurin from Pseudomonas aeruginosa is a small 128-residue, copper-containing protein. Its redox potential can be modified by mutating the protein. Free-energy calculations based on classical molecular-dynamics simulations of the protein and from mutants in aqueous solution at different pH values were used to compute relative redox potentials.
View Article and Find Full Text PDFThe method of flexible constraints was implemented in a Monte Carlo code to perform numerical simulations of liquid water and ice Ih in the constant number of molecules, volume, and temperature and constant pressure, instead of volume ensembles, using the polarizable and flexible mobile charge densities in harmonic oscillators (MCDHO) model. The structural and energetic results for the liquid at T=298 K and rho=997 kg m(-3) were in good agreement with those obtained from molecular dynamics. The density obtained at P=1 atm with flexible constraints, rho=1008 kg m(-3), was slightly lower than with the classical sampling of the intramolecular vibrations, rho=1010 kg m(-3).
View Article and Find Full Text PDFAtomistic QM/MM simulations have been carried out on the complete photocycle of Photoactive Yellow Protein, a bacterial photoreceptor, in which blue light triggers isomerization of a covalently bound chromophore. The "chemical role" of the protein cavity in the control of the photoisomerization step has been elucidated. Isomerization is facilitated due to preferential electrostatic stabilization of the chromophore's excited state by the guanidium group of Arg52, located just above the negatively charged chromophore ring.
View Article and Find Full Text PDFResidual dipolar couplings between 15N and 1H nuclear spins in HPr were used to determine the protein's orientation in a medium of bicelles, oriented by a magnetic field. In the case of wild-type HPr the protein's non-spherical shape can explain its orientation in this medium. In the case of the F48W mutant it was found that at least one other mechanism contributes to the observed orientation of the protein, to a degree that depends on the concentration of phosphate ions in the medium.
View Article and Find Full Text PDFMolecular dynamics simulation techniques, together with semiempirical PM3 calculations, have been used to investigate the effect of photoisomerization of the 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. In this bacteria, exposure to blue light leads to a negative photoactic response. The calculations suggest that the isomerization does not directly destabilize the protein.
View Article and Find Full Text PDFMolecular dynamics simulation techniques together with time-dependent density functional theory calculations have been used to investigate the effect of photon absorption by a 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. The calculations suggest that the protein not only modifies the absorption spectrum of the chromophore but also regulates the subsequent isomerization of the chromophore by stabilizing the isomerization transition state. Although signaling from PYP is thought to involve partial unfolding of the protein, the mechanical effects accompanying isomerization do not appear to directly destabilize the protein.
View Article and Find Full Text PDFHaloalkane dehalogenase (DhlA) was used as a model protein to explore the possibility to use molecular dynamics (MD) simulations as a tool to identify flexible regions in proteins that can serve as a target for stability enhancement by introduction of a disulfide bond. DhlA consists of two domains: an alpha/beta-hydrolase fold main domain and a cap domain composed of five alpha-helices. MD simulations of DhlA showed high mobility in a helix-loop-helix region in the cap domain, involving residues 184-211.
View Article and Find Full Text PDFBy computer simulation, using both quantum and classical dynamics, we determined the rate constant and the kinetic isotope effect of the rate-determining step in the neutral hydrolysis of p-methoxyphenyl dichloroacetate in aqueous solution. This step involves a proton transfer concerted with the formation of a CO bond. A method of biased sampling was used; the Gibbs free energy of the biased configuration from which proton transfer is likely to occur was determined by a combination of semiempirical quantum calculations and thermodynamic integration.
View Article and Find Full Text PDFA systematic analysis is performed on the effectiveness of removing degrees of freedom from hydrogen atoms and/or increasing hydrogen masses to increase the efficiency of molecular dynamics simulations of hydrogen-rich systems such as proteins in water. In proteins, high-frequency bond-angle vibrations involving hydrogen atoms limit the time step to 3 fs, which is already a factor of 1.5 beyond the commonly used time step of 2 fs.
View Article and Find Full Text PDF