We present rheological evidence demonstrating the glass-like nature of bicontinuous interfacially jammed emulsion gels (bijels). Under small amplitude oscillatory shear, bijels exhibited rheological signatures akin to and relaxation that are also invariable to interfacial tension changes, behaviors which are reminiscent of caged particle dynamics found in colloidal glasses, and well described by a previously reported adaptation of mode-coupling theory for colloidal glass rheology. Guided by their rheological signatures and supported by particle detachment and attraction energy approximations, we rationalize that bijels can be represented as 2-dimensional (2D) colloidal glasses that percolate in 3-dimensional (3D) space, and attractive interactions are not required for their stability.
View Article and Find Full Text PDFWe introduce laser cavitation rheology (LCR) as a minimally-invasive optical method to characterize mechanical properties within the interior of biological and synthetic aqueous soft materials at high strain-rates. We utilized time-resolved photography to measure cavitation bubble dynamics generated by the delivery of focused 500 ps duration laser radiation at λ = 532 nm within fibrin hydrogels at pulse energies of E = 12, 18 µJ and within polyethylene glycol (600) diacrylate (PEG (600) DA) hydrogels at E = 2, 5, 12 µJ. Elastic moduli and failure strains of fibrin and PEG (600) DA hydrogels were calculated from these measurements by determining parameter values which provide the best fit of the measured data to a theoretical model of cavitation bubble dynamics in a Neo-Hookean viscoelastic medium subject to material failure.
View Article and Find Full Text PDF