Publications by authors named "Herman C Floresca"

Atomically smooth hexagonal boron nitride (h-BN) layers have very useful properties and thus potential applications for protective coatings, deep ultraviolet (DUV) emitters, and as a dielectric for nanoelectronics devices. In this paper, we report on the growth of h-BN by a low-pressure chemical vapor deposition (LPCVD) process using diborane and ammonia as the gas precursors. The use of LPCVD allows synthesis of h-BN with a controlled number of layers defined by the growth conditions, temperature, time, and gas partial pressure.

View Article and Find Full Text PDF

Quantum confinement of carriers has a substantial impact on nanoscale device operations. We present electrical transport analysis for lithographically fabricated sub-5 nm thick Si nanowire field-effect transistors and show that confinement-induced quantum oscillations prevail at 300 K. Our results discern the basis of recent observations of performance enhancement in ultrathin Si nanowire field-effect transistors and provide direct experimental evidence for theoretical predictions of enhanced carrier mobility in strongly confined nanowire devices.

View Article and Find Full Text PDF

We demonstrate lithographically fabricated Si nanowire field effect transistors (FETs) with long Si nanowires of tiny cross sectional size (∼3-5 nm) exhibiting high performance without employing complementarily doped junctions or high channel doping. These nanowire FETs show high peak hole mobility (as high as over 1200 cm(2)/(V s)), current density, and drive current as well as low drain leakage current and high on/off ratio. Comparison of nanowire FETs with nanobelt FETs shows enhanced performance is a result of significant quantum confinement in these 3-5 nm wires.

View Article and Find Full Text PDF

We have developed the focused ion beam (FIB) fold-out technique, for transmission electron microscopy (TEM) sample preparation in which there is no fine polishing or dimpling, thus saving turnaround time. It does not require a nanomanipulator yet is still site specific. The sample wafer is cut to shape, polished down, and then placed in a FIB system.

View Article and Find Full Text PDF