Publications by authors named "Herlinde De Keersmaecker"

The most lethal form of skin cancer is cutaneous melanoma, a tumor that develops in the melanocytes, which are found in the epidermis. The treatment strategy of melanoma is dependent on the stage of the disease and often requires combined local and systemic treatment. Over the years, systemic treatment of melanoma has been revolutionized and shifted toward immunotherapeutic approaches.

View Article and Find Full Text PDF

Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport out of pharmaceutical pellets. Water-soluble HPC leaches out and forms a porous structure that controls the drug transport. Industrially, the pellets are coated using a fluidized bed spraying device, and a layered film exhibiting varying porosity and structure after leaching is obtained.

View Article and Find Full Text PDF

In vitro models of differentiated respiratory epithelium that allow high-throughput screening are an important tool to explore new therapeutics for chronic respiratory diseases. In the present study, we developed in vivo-like three-dimensional (3-D) models of bronchial epithelial cell lines that are commonly used to study chronic lung disease (16HBE14o, CFBE41o and CFBE41o 6.2 WT-CFTR).

View Article and Find Full Text PDF

Ex vivo modification of T cells with exogenous cargo is a common prerequisite for the development of T cell therapies, such as chimeric antigen receptor therapy. Despite the clinical success and FDA approval of several such products, T cell manufacturing presents unique challenges related to therapeutic efficacy after adoptive cell transfer and several drawbacks of viral transduction-based manufacturing, such as high cost and safety concerns. To generate cellular products with optimal potency, engraftment potential and persistence in vivo, recent studies have shown that minimally differentiated T cell phenotypes are preferred.

View Article and Find Full Text PDF

Globally, over 2 billion people suffer from vision impairment. Despite complex multifactorial etiology, advanced glycation end products are involved in the pathogenesis of many causative age- and diabetes-related eye diseases. Deglycating enzyme fructosamine-3-kinase (FN3K) was recently proposed as a potential therapeutic, but for further biopharmaceutical development, knowledge on its manufacturability and stability and mobility in the vitreous fluid of the eye is indispensable.

View Article and Find Full Text PDF

Vapor nanobubble (VNB) photoporation is a physical method for intracellular delivery that has gained significant interest in the past decade. It has successfully been used to introduce molecular cargo of diverse nature into different cell types with high throughput and minimal cytotoxicity. For translational purposes, it is important to understand whether and how photoporation affects cell homeostasis.

View Article and Find Full Text PDF

The colonic epithelial barrier is vital to preserve gut and host health by maintaining the immune homeostasis between host and microbes. The mechanisms underlying beneficial or harmful host-microbe interactions are poorly understood and impossible to study in vivo given the limited accessibility and ethical constraints. Moreover, existing in vitro models lack the required cellular complexity for the routine, yet profound, analysis of the intricate interplay between different types of host and microbial cells.

View Article and Find Full Text PDF

Excessive inflammatory responses in wounds are characterized by the presence of high levels of pro-inflammatory M1 macrophages rather than pro-healing M2 macrophages, which leads to delayed wound healing. Macrophage reprogramming from the M1 to M2 phenotype through knockdown of interferon regulatory factor 5 (irf5) has emerged as a possible therapeutic strategy. While downregulation of irf5 could be achieved by siRNA, it very much depends on successful intracellular delivery by suitable siRNA carriers.

View Article and Find Full Text PDF

Impaired wound healing in people with diabetes has multifactorial causes, with insufficient neovascularization being one of the most important. Hypoxia-inducible factor-1 (HIF-1) plays a central role in the hypoxia-induced response by activating angiogenesis factors. As its activity is under precise regulatory control of prolyl-hydroxylase domain 2 (PHD-2), downregulation of PHD-2 by small interfering RNA (siRNA) could stabilize HIF-1α and, therefore, upregulate the expression of pro-angiogenic factors as well.

View Article and Find Full Text PDF

Intracellular delivery of membrane-impermeable cargo offers unique opportunities for biological research and the development of cell-based therapies. Despite the breadth of available intracellular delivery tools, existing protocols are often suboptimal and alternative approaches that merge delivery efficiency with both biocompatibility, as well as applicability, remain highly sought after. Here, a comprehensive platform is presented that exploits the unique property of cationic hydrogel nanoparticles to transiently disrupt the plasma membrane of cells, allowing direct cytosolic delivery of uncomplexed membrane-impermeable cargo.

View Article and Find Full Text PDF

Photodynamic and photothermal cell killing at the surface of tissues finds applications in medicine. However, a lack of control over heat dissipation following a treatment with light might damage surrounding tissues. A new strategy to kill cells at the surface of tissues is reported.

View Article and Find Full Text PDF

Nanotechnology has made an important contribution to oncology in recent years, especially for drug delivery. While many different nano-delivery systems have been suggested for cancer therapy, selenium nanoparticles (SeNPs) are particularly promising anticancer drug carriers as their core material offers interesting synergistic effects to cancer cells. Se compounds can exert cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis, eventually leading to apoptosis induction in many kinds of cancer cells.

View Article and Find Full Text PDF

Inflammasomes are multi-protein complexes that guard against cellular stress and microbial infections. Inflammasome activation studies frequently require delivery of pathogen-derived virulence factors into the cytosol of macrophages and other innate immune cells. This is a challenging requirement since primary macrophages are difficult-to-transfect, especially when it comes to the intracellular delivery of proteins.

View Article and Find Full Text PDF

RNA therapeutics are poised to revolutionize medicine. To unlock the full potential of RNA drugs, safe and efficient (nano)formulations to deliver them inside target cells are required. Endosomal sequestration of nanocarriers represents a major bottleneck in nucleic acid delivery.

View Article and Find Full Text PDF

Recently, it was proposed that the thiophene ring is capable of promoting mitochondrial accumulation when linked to fluorescent markers. As a noncharged group, thiophene presents several advantages from a synthetic point of view, making it easier to incorporate such a side moiety into different molecules. Herein, we confirm the general applicability of the thiophene group as a mitochondrial carrier for drugs and fluorescent markers based on a new concept of nonprotonable, noncharged transporter.

View Article and Find Full Text PDF

Delivery of small interfering RNA (siRNA) provides one of the most powerful strategies for downregulation of therapeutic targets. Despite the widely explored capabilities of this strategy, intracellular delivery is hindered by a lack of carriers that have high stability, low toxicity and high transfection efficiency. Here we propose a layer by layer (LBL) self-assembly method to fabricate chitosan-coated gold nanoparticles (CS-AuNPs) as a more stable and efficient siRNA delivery system.

View Article and Find Full Text PDF

Conjugation to high molecular weight (MW ≥ 20 kDa) polyethylene glycol (PEG) was previously shown to largely prolong the lung residence time of recombinant human deoxyribonuclease I (rhDNase) and improve its therapeutic efficacy following pulmonary delivery in mice. In this paper, we investigated the mechanisms promoting the extended lung retention of PEG-rhDNase conjugates using cell culture models and lung biological media. Uptake by alveolar macrophages was also assessed in vivo.

View Article and Find Full Text PDF

Fluorescence microscopy is the method of choice for studying intracellular dynamics. However, its success depends on the availability of specific and stable markers. A prominent example of markers that are rapidly gaining interest are nanobodies (Nbs, ~ 15 kDa), which can be functionalized with bright and photostable organic fluorophores.

View Article and Find Full Text PDF

The delivery of therapeutic peptides via the oral route remains one of biggest challenges in the pharmaceutical industry. Recently, we have described an alternative improved drug delivery system for peptide delivery via the oral route, consisting of a lipidic nanocapsule. Despite the striking effects observed, it is still essential to develop strategies to strengthen the nanocarriers' glucagon-like peptide-1 (GLP-1) secretory effect of the nanocarrier and/or prolong its antidiabetic effect in vivo to facilitate its translation into the clinic.

View Article and Find Full Text PDF

infections are difficult to treat due to resistance, biofilm formation and persistence. strain J2315 has a large multi-replicon genome (8.06 Mb) and the function of a large fraction of (conserved) hypothetical genes remains elusive.

View Article and Find Full Text PDF

DNA supercoiling fundamentally constrains and regulates the storage and use of genetic information. While the equilibrium properties of supercoiled DNA are relatively well understood, the dynamics of supercoils are much harder to probe. Here we use atomic force microscopy (AFM) imaging to demonstrate that positively supercoiled DNA plasmids, in contrast to their negatively supercoiled counterparts, preserve their plectonemic geometry upon adsorption under conditions that allow for dynamics and equilibration on the surface.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) form the basis of cellular processes, regulating cell behavior and fate. PPIs can be extremely transient in nature, which hinders their detection. In addition, traditional biochemical methods provided limited information on the spatial distribution and temporal dynamics of PPIs that is crucial for their regulation in the crowded cellular environment.

View Article and Find Full Text PDF

Correlative imaging by fluorescence and atomic force microscopy provides a versatile tool to extract orthogonal information on structurally heterogeneous biomolecular assemblies. In this chapter, we describe an integrated setup for correlative fluorescence and force microscopy. We present factors influencing data quality, as well as step-by-step protocols for sample preparation, data acquisition, and data processing that yield nanoscale topographic resolution, high image registration accuracy, and single-fluorophore sensitivity.

View Article and Find Full Text PDF

Correlative imaging by fluorescence and force microscopy is an emerging technology to acquire orthogonal information at the nanoscale. Whereas atomic force microscopy excels at resolving the envelope structure of nanoscale specimens, fluorescence microscopy can detect specific molecular labels, which enables the unambiguous recognition of molecules in a complex assembly. Whereas correlative imaging at the micrometer scale has been established, it remains challenging to push the technology to the single-molecule level.

View Article and Find Full Text PDF

Investigation of protein-protein interactions (PPI) in is essential for understanding the regulation of the signal transduction network that triggers its pathogenic lifestyle. Unique features of , such as its alternative codon usage and incomplete meiosis, have enforced the optimization of standard genetic methods as well as development of novel approaches. Since the existing methods for detection of PPI are limited for direct visualization of the interacting complex , we have established a bimolecular fluorescence complementation (BiFC) assay in , a powerful technique for studying PPI.

View Article and Find Full Text PDF