Annu Int Conf IEEE Eng Med Biol Soc
July 2023
Abnormalities in tissue can be detected and analyzed by evaluating mechanical properties, such as strain and stiffness. While current sensor systems are effective in measuring longitudinal properties perpendicular to the measurement sensor, identifying in-plane deformation remains a significant challenge. To address this issue, this paper presents a novel method for reconstructing in-plane deformation of observed tissue surfaces using a fringe projection sensor specifically designed for measuring tissue deformations.
View Article and Find Full Text PDFThe use of 3D printed micro-optical components has enabled the miniaturization of various optical systems, including those based on single photon sources. However, in order to enhance their usability and performance, it is crucial to gain insights into the physical effects influencing these systems via computational approaches. As there is no universal numerical method which can be efficiently applied in all cases, combining different techniques becomes essential to reduce modeling and simulation effort.
View Article and Find Full Text PDFIn order to extend simulation capabilities for reflective and catadioptric 3D-printed micro optics, we present a fast bidirectional vector wave propagation method (BWPM). Contrary to established fast simulation methods like the wave propagation method (WPM), the BWPM allows for the additional consideration of reflected and backwards propagating electric fields. We study the convergence of the BWPM and investigate relevant simulation examples.
View Article and Find Full Text PDFMicrostructuring techniques, such as laser direct writing, enable the integration of microstructures into conventional polymer lens systems and may be used to generate advanced functionality. Hybrid polymer lenses combining multiple functions such as diffraction and refraction in a single component become possible. In this paper, a process chain to enable encapsulated and aligned optical systems with advanced functionality in a cost-efficient way is presented.
View Article and Find Full Text PDF3D direct laser writing is a powerful and widely used tool to create complex micro-optics. The fabrication method offers two different writing modes. During the immersion mode, an immersion medium is applied between the objective and the substrate while the photoresist is exposed on its back side.
View Article and Find Full Text PDFIn this work, we propose the Fast Polarized Wave Propagation Method (FPWPM), which is an efficient method for vector wave optical simulations of microoptics. The FPWPM is capable of handling comparably large simulation volumes while maintaining quick runtime. This allows for real-world application of this method for the rapid development process of 3D-printed microoptics.
View Article and Find Full Text PDFWe discuss the coupling efficiency of single-photon sources into single-mode fibers using 3D printed micro-optical lens designs. Using the wave propagation method, we optimize lens systems for two different quantum light sources and assess the results in terms of maximum coupling efficiencies, misalignment effects, and thermo-optical influences. Thereby, we compare singlet lens designs with one lens printed onto the fiber with doublet lens designs with an additional lens printed onto the semiconductor substrate.
View Article and Find Full Text PDFWe perform extended numerical studies to maximize the overall photon coupling efficiency of fiber-coupled quantum dot single-photon sources emitting in the near-infrared and O-band and C-band. Using the finite element method, we optimize the photon extraction and fiber-coupling efficiency of quantum dot single-photon sources based on micromesas, microlenses, circular Bragg grating cavities and micropillars. The numerical simulations which consider the entire system consisting of the quantum dot source itself, the coupling lens, and the single-mode fiber, yield overall photon coupling efficiencies of up to 83%.
View Article and Find Full Text PDFThree-dimensional (3D) organoid culture recapitulating patient-specific histopathological and molecular diversity offers great promise for precision medicine in cancer. In this study, we established label-free imaging procedures, including Raman microspectroscopy (RMS) and fluorescence lifetime imaging microscopy (FLIM), for in situ cellular analysis and metabolic monitoring of drug treatment efficacy. Primary tumor and urine specimens were utilized to generate bladder cancer organoids, which were further treated with various concentrations of pharmaceutical agents relevant for the treatment of bladder cancer (i.
View Article and Find Full Text PDFMultimodal microendoscopes enable co-located structural and molecular measurements in vivo, thus providing useful insights into the pathological changes associated with disease. However, different optical imaging modalities often have conflicting optical requirements for optimal lens design. For example, a high numerical aperture (NA) lens is needed to realize high-sensitivity fluorescence measurements.
View Article and Find Full Text PDFWhen measuring surfaces it is always a challenge to differentiate whether differences to the expected form originate from positioning errors or from surface errors. In interferometry it is common to subtract tilt and power terms from the measurement result to remove misalignment contributions. This is a suitable approximation for spherical surfaces with small NA.
View Article and Find Full Text PDFSimultaneous realization of ultra-large field of view (FOV), large lateral image size, and a small form factor is one of the challenges in imaging lens design and fabrication. All combined this yields an extensive flow of information while conserving ease of integration where space is limited. Here, we present concepts, correction methods and realizations towards freeform multi-aperture wide-angle cameras fabricated by femtosecond direct laser writing (fsDLW).
View Article and Find Full Text PDFCoherence scanning interferometry enables high precision measurements in manifold research and industry applications. In most modern systems, a digital camera (CCD/CMOS) is used to record the interference signals for each pixel. When measuring steep surfaces or using light sources with a broad wavelength spectrum, only a small area of the sensor captures useable interference signals in one frame, so a large fraction of pixels is unused.
View Article and Find Full Text PDFIn the context of cancer surgery, there is always a trade-off between oncological safety and preservation of function. This is especially true in pelvic surgery due to the close relationship to the pelvic floor muscles, blood supply and nerves. Currently, risk models, preoperative imaging, the surgeon's assessment, and the intraoperative frozen section serve as the basis for decision-making.
View Article and Find Full Text PDFThree-dimensional (3D) direct laser writing is a powerful technology to create nano- and microscopic optical devices. While the design freedom of this technology offers the possibility to reduce different monochromatic aberrations, reducing chromatic aberrations is often neglected. In this Letter, we successfully demonstrate the combination of refractive and diffractive surfaces to create a refractive/diffractive achromat and show, to the best of our knowledge, the first refractive/diffractive apochromat by using DOEs and simultaneously combining two different photoresists, namely IP-S and IP-n162.
View Article and Find Full Text PDFPreclinical and clinical diagnostics increasingly rely on techniques to visualize internal organs at high resolution via endoscopes. Miniaturized endoscopic probes are necessary for imaging small luminal or delicate organs without causing trauma to tissue. However, current fabrication methods limit the imaging performance of highly miniaturized probes, restricting their widespread application.
View Article and Find Full Text PDFThe hydrostatic pressure of the nucleus pulposus represents an important parameter in the characterization of spinal biomechanics, affecting the segmental stability as well as the stress distribution across the anulus fibrosus and the endplates. For the development of experimental setups and the validation of numerical models of the spine, intradiscal pressure (IDP) values under defined boundary conditions are therefore essential. Due to the lack of data regarding the thoracic spine, the purpose of this study was to quantify the IDP of human thoracic spinal motion segments under pure moment loading.
View Article and Find Full Text PDFIn this Letter, we present a 3D-printed complex wide-angle multi-element Hypergon micro-objective, composed of aspherical lenses smaller than 1 mm, which exhibits distortion-free imaging performance. The objective is fabricated by a multi-step femtosecond two-photon lithography process. To realize the design, we apply a novel (to the best of our knowledge) approach using shadow evaporation to create highly non-transparent aperture stops, which are crucial components in many optical systems.
View Article and Find Full Text PDFWe demonstrate mass production compatible fabrication of polymer-based micro Fresnel lenses by injection compression molding. The extremely robust titanium-molding tool is structured with high precision by focused ion beam milling. In order to achieve optimal shape accuracy in the titanium we use an iterative design optimization.
View Article and Find Full Text PDFPlanar lenses such as metalenses and diffractive lenses exhibit severe field-dependent aberrations when imaging extended objects with high numerical aperture. This problem can be overcome by stacking at least two of such devices on top of each other. In this work, we present such stacked imaging systems, namely doublets and triplets of diffractive optical elements.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
October 2019
Objective: The purpose of this contribution is to determine the ideal near infrared wavelength bands for monochromatic and dual-band remote heartbeat detection using imaging photoplethysmography (iPPG) of the forehead.
Methods: Experimental data of 38 healthy volunteers has been recorded and analyzed. For the data acquisition, a fast hyperspectral imager has been used.
While most experiments on water or ice utilize rather complex, elaborate, and expensive apparatus in order to obtain reliable optical data, here we present a simple and affordable setup that enables us to perform near-infrared measurements on water, ice, and snow on top of rough diffuse reflecting surfaces such as concrete, stone, pavement, or asphalt. By using the properties of diffuse scattering instead of specular reflection, we are able to determine the imaginary part of the refraction index of water without using any liquid cells. In addition, we demonstrate that the snow spectra can be well described by newly developed two-dimensional ray tracing simulations.
View Article and Find Full Text PDFFemtosecond 3D printing is an important technology for manufacturing nano- and microscopic optical devices and elements. However, most structures in the past have been created using only one photoresist at a time, thus limiting potential applications. In this Letter, we successfully demonstrate the combination of two different photoresists, namely, IP-S and IP-Dip, to realize multi-component three-dimensional direct laser written optics.
View Article and Find Full Text PDFThe fabrication of 3D-printed micro-optical systems by femtosecond direct laser writing is state of the art. However, the inherent transparency of the lens mount, which is also made of photopolymer, causes a degradation of the image contrast due to stray light and scattering. Furthermore, apertures play a key role in optical design but cannot be directly integrated during 3D printing.
View Article and Find Full Text PDFWe demonstrate orbital-angular momentum (OAM) light up to a topological charge of l=3 behind a single mode fiber. Femtosecond 3D direct laser writing is used to fabricate spiral phase plates of l=1,2 and 3, composed of 10 discrete steps, on the tip of single mode optical fibers. These structures efficiently convert out-coupled light from the fiber at 785 nm wavelength into optical vortex beams carrying an orbital-angular momentum of lℏper photon.
View Article and Find Full Text PDF