Publications by authors named "Herica A Magosso"

In this study, the hybrid material 3-n-propyl(3-methylpyridinium) silsesquioxane chloride (Si3PyCl) was synthesized and investigated as a novel sorbent phase for the disposable pipette extraction (DPX) technique coupled to high-performance liquid chromatography-florescence detection. This sorbent phase was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Aqueous samples containing the phenolic endocrine-disrupting compounds bisphenol A (BPA), 17α-ethynylestradiol (EE2), 4-tert-octylphenol (4-t-OP), 4-octylphenol (4-OP) and 4-nonylphenol (4-NP) were subjected to DPX procedures and a series of optimizations was performed to determine the ideal extraction conditions using this approach.

View Article and Find Full Text PDF

The water-soluble 3-n-propyl-4-picolinium silsesquioxane chloride (Si4Pic(+)Cl(-)) polymer was prepared, characterized and used as a stabilizing agent for the synthesis of gold nanoparticles (nAu). The ability of Si4Pic(+)Cl(-) to adsorb anionic metal complexes such as AuCl4(-) ions allowed well-dispersed nAu to be obtained with an average particle size of 4.5nm.

View Article and Find Full Text PDF

This work describes a highly controlled post-grafting of mono and dicationic 4,4'-bipyridine alkoxysilane derivatives (Bipy(+) and Bipy(2+)) onto the surface of an ordered mesoporous silica, SBA-15. The materials obtained are designated as SBA-15/Bipy(+)Cl(-) and SBA-15/Bipy(2+)Cl(2)(-), both possessing chloride as counter ion. The regular arrangement of uniform pores of this inorganic matrix is likely to ensure good accessibility to the active centers (electron acceptors) attached to the surface.

View Article and Find Full Text PDF

This work describes the preparation and characterization of postfunctionalized ordered (SBA-15) and nonordered (SMD) mesoporous silicas with n-propyl-1,4-diazoniabicycle[2.2.2]octane chloride (DbCl) moiety.

View Article and Find Full Text PDF

An n-propylpyridinium chloride-modified PDMS elastomeric network, PDMS/Py(+)Cl(-), was prepared from linear PDMS chains containing Si(CH(3))(2)OH end-groups cross-linked by 3-chloropropyltrimethoxysilane and posterior reaction with pyridine. PDMS/Py(+)Cl(-) material was structurally characterized by infrared spectroscopy (IR) and solid state (13)C and (29)Si NMR. Thermogravimetric analysis of the product showed good thermal stability, with the initial temperature of weight loss at 450 K.

View Article and Find Full Text PDF