Background: Metformin, a widely prescribed antidiabetic drug, has shown several promising effects for cancer treatment. These effects have been shown to be mediated by dual modulation of the AMPK-mTORC1 axis, where AMPK acts upstream of mTORC1 to decrease its activity. Nevertheless, alternative pathways have been recently discovered suggesting that metformin can act through of different targets regulation.
View Article and Find Full Text PDFBackground/aim: To date, several proteomics studies in cervical cancer (CC) have focused mainly on squamous cervical cancer (SCC). Our study aimed to discover and clarify differences in SCC and CAD that may provide valuable information for the identification of proteins involved in tumor progression, in CC as a whole, or specific for SCC or CAD.
Materials And Methods: Total protein extracts from 15 individual samples corresponding to 5 different CC tissue types were compared with a non-cancerous control group using bidimensional liquid chromatography-mass spectrometry (2D LC-MS/MS), isobaric tags for relative and absolute quantitation (ITRAQ), principal component analysis (PCA) and gene set enrichment analysis (GSEA).
Transcription factors OCT4, SOX2, KLF4, C-MYC, and NANOG (OSKM-N) regulate pluripotency and stemness, and their ectopic expression reprograms human and murine fibroblasts that constitute the key of regenerative medicine. To determine their contribution to cell transformation, we analyzed the gene expression profiles of these transcription factors in cervical cancer samples and found that they are preferentially expressed in the tumor component. Also, cancer stem cell-enriched cultures grown as sphere cultures showed overexpression of OSKM-N genes.
View Article and Find Full Text PDFRecently, a subpopulation of tumor cells, called cancer stem cells (CSC), has been characterized, and these have emerged as a major topic in cancer research. CSC are proposed to repair DNA damage more efficiently than the rest of tumor cells, resisting chemotherapy or radiotherapy and causing clinical recurrence and metastasis. We aimed to determine the molecular basis of radioresistance and first compared the response to ionizing radiation (IR) between cancer stem cell-enriched cultures grown as spheres and conventional tumor cell line cultures grown as monolayer, from HeLa and MCF-7 cancer cell lines.
View Article and Find Full Text PDFBackground: Cancer stem cells (CSC) are characterized by deregulated self-renewal, tumorigenicity, metastatic potential, aberrant stemness signaling pathways, resistance to conventional therapy, and the ability to give rise to a progeny of proliferating cells that constitute the bulk of tumors. Targeting CSC will provide novel treatments for cancer. Different investigations have focused on developing complementary approaches that involve natural compounds that decrease chemo-resistance and reduce the side effects of conventional therapies.
View Article and Find Full Text PDFCervical cancer is the second most frequent tumor type in women worldwide with cases developing clinical recurrence, metastasis, and chemoresistance. The cancer stem cells (CSC) may be implicated in tumor resistance to therapy. RESveratrol (RES), a natural compound, is an antioxidant with multiple beneficial activities.
View Article and Find Full Text PDF