Publications by authors named "Hergenhahn U"

Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na, Mg, and Al ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed.

View Article and Find Full Text PDF
Article Synopsis
  • Molecules in solvation shells have unique properties that differ from those of the solvent in bulk and can influence chemical reactions.
  • X-ray-based spectroscopies are commonly used to examine these properties but often fail to selectively analyze solvation-shell molecules.
  • New "non-local" X-ray processes, like intermolecular Coulombic decay (ICD), offer a promising way to study the first solvation shell of cations and to measure water molecules' electron binding energies more effectively.
View Article and Find Full Text PDF

X-ray-induced damage is one of the key topics in radiation chemistry. Substantial damage is attributed to low-energy electrons and radicals emerging from direct inner-shell photoionization or produced by subsequent processes. We apply multi-electron coincidence spectroscopy to X-ray-irradiated aqueous solutions of inorganic ions to investigate the production of low-energy electrons (LEEs) in a predicted cascade of intermolecular charge- and energy-transfer processes, namely electron-transfer-mediated decay (ETMD) and interatomic/intermolecular Coulombic decay (ICD).

View Article and Find Full Text PDF

Liquid-jet photoemission spectroscopy (LJ-PES) allows for a direct probing of electronic structure in aqueous solutions. We show the applicability of the approach to biomolecules in a complex environment, exploring site-specific information on the interaction of adenosine triphosphate in the aqueous phase (ATP) with magnesium (Mg), highlighting the synergy brought about by the simultaneous analysis of different regions in the photoelectron spectrum. In particular, we demonstrate intermolecular Coulombic decay (ICD) spectroscopy as a new and powerful addition to the arsenal of techniques for biomolecular structure investigation.

View Article and Find Full Text PDF

We present a combined experimental and theoretical investigation of the radiationless decay spectrum of an O 1s double core hole in liquid water. Our experiments were carried out using liquid-jet electron spectroscopy from cylindrical microjets of normal and deuterated water. The signal of the double-core-hole spectral fingerprints (hypersatellites) of liquid water is clearly identified, with an intensity ratio to Auger decay of singly charged O 1s of 0.

View Article and Find Full Text PDF

The recent application of concepts from condensed-matter physics to photoelectron spectroscopy (PES) of volatile, liquid-phase systems has enabled the measurement of electronic energetics of liquids on an absolute scale. Particularly, vertical ionization energies, VIEs, of liquid water and aqueous solutions, both in the bulk and at associated interfaces, can now be accurately, precisely, and routinely determined. These IEs are referenced to the local vacuum level, which is the appropriate quantity for condensed matter with associated surfaces, including liquids.

View Article and Find Full Text PDF

Biomolecular radiation damage is largely mediated by radicals and low-energy electrons formed by water ionization rather than by direct ionization of biomolecules. It was speculated that such an extensive, localized water ionization can be caused by ultrafast processes following excitation by core-level ionization of hydrated metal ions. In this model, ions relax via a cascade of local Auger-Meitner and, importantly, non-local charge- and energy-transfer processes involving the water environment.

View Article and Find Full Text PDF

Correction for 'Photoelectron angular distributions as sensitive probes of surfactant layer structure at the liquid-vapor interface' by Rémi Dupuy , , 2022, , 4796-4808, https://doi.org/10.1039/D1CP05621B.

View Article and Find Full Text PDF

We present spatially resolved measurements of the temperature of a flat liquid water microjet for varying ambient pressures, from vacuum to 100% relative humidity. The entire jet surface is probed in a single shot by a high-resolution infrared camera. Obtained 2D images are substantially influenced by the temperature of the apparatus on the opposite side of the infrared camera; a protocol to correct for the thermal background radiation is presented.

View Article and Find Full Text PDF

We demonstrate liquid-jet photoelectron spectroscopy from a flatjet formed by the impingement of two micron-sized cylindrical jets of different aqueous solutions. Flatjets provide flexible experimental templates enabling unique liquid-phase experiments that would not be possible using single cylindrical liquid jets. One such possibility is to generate two co-flowing liquid-jet sheets with a common interface in vacuum, with each surface facing the vacuum being representative of one of the solutions, allowing face-sensitive detection by photoelectron spectroscopy.

View Article and Find Full Text PDF

The determination of depth profiles across interfaces is of primary importance in many scientific and technological areas. Photoemission spectroscopy is in principle well suited for this purpose, yet a quantitative implementation for investigations of liquid-vapor interfaces is hindered by the lack of understanding of electron-scattering processes in liquids. Previous studies have shown, however, that core-level photoelectron angular distributions (PADs) are altered by depth-dependent elastic electron scattering and can, thus, reveal information on the depth distribution of species across the interface.

View Article and Find Full Text PDF

Non-local analogues of Auger decay are increasingly recognized as important relaxation processes in the condensed phase. Here, we explore non-local autoionization, specifically Intermolecular Coulombic Decay (ICD), of a series of aqueous-phase isoelectronic cations following 1s core-level ionization. In particular, we focus on Na, Mg, and Al ions.

View Article and Find Full Text PDF

We present an experimental X-ray photoelectron circular dichroism (PECD) study of liquid fenchone at the C 1s edge. A novel setup to enable PECD measurements on a liquid microjet [Malerz , , 2022, , 015101] was used. For the C 1s line assigned to fenchone's carbonyl carbon, a non-vanishing asymmetry is found in the intensity of photoelectron spectra acquired under a fixed angle in the backward-scattering plane.

View Article and Find Full Text PDF

The characterization of liquid-vapor interfaces at the molecular level is an important underpinning for a basic understanding of fundamental heterogeneous processes in many areas, such as atmospheric science. Here we use X-ray photoelectron spectroscopy to study the adsorption of a model surfactant, octanoic acid, at the water-gas interface. In particular, we examine the information contained in photoelectron angular distributions and show that information about the relative depth of molecules and functional groups within molecules can be obtained from these measurements.

View Article and Find Full Text PDF

We present a unique experimental design that enables the measurement of photoelectron circular dichroism (PECD) from chiral molecules in aqueous solution. The effect is revealed from the intensity difference of photoelectron emission into a backward-scattering angle relative to the photon propagation direction when ionizing with circularly polarized light of different helicity. This leads to asymmetries (normalized intensity differences) that depend on the handedness of the chiral sample and exceed the ones in conventional dichroic mechanisms by orders of magnitude.

View Article and Find Full Text PDF

Recent advancement in quantitative liquid-jet photoelectron spectroscopy enables the accurate determination of the absolute-scale electronic energetics of liquids and species in solution. The major objective of the present work is the determination of the absolute lowest-ionization energy of liquid water, corresponding to the 1b orbital electron liberation, which is found to vary upon solute addition, and depends on the solute concentration. We discuss two prototypical aqueous salt solutions, NaI and tetrabutylammonium iodide, TBAI, with the latter being a strong surfactant.

View Article and Find Full Text PDF

The absolute-scale electronic energetics of liquid water and aqueous solutions, both in the bulk and at associated interfaces, are the central determiners of water-based chemistry. However, such information is generally experimentally inaccessible. Here we demonstrate that a refined implementation of the liquid microjet photoelectron spectroscopy (PES) technique can be adopted to address this.

View Article and Find Full Text PDF

Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry.

View Article and Find Full Text PDF

Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (p) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonation site. Valence spectra from solutions at pH values below and above the first p reveal a change in glucose's lowest ionization energy upon the deprotonation of neutral glucose and the subsequent emergence of its anionic counterpart. Site-specific insights into the solution-pH-dependent molecular structure changes are also shown to be accessible via C 1s photoelectron spectroscopy.

View Article and Find Full Text PDF

We report the adaptation of an electron-photon coincidence detection scheme to the multibunch hybrid mode of the synchrotron radiation source BESSY II (Helmholtz-Zentrum Berlin). Single-event-based data acquisition and evaluation, combined with the use of relative detection times between the coincident particles, enable the acquisition of proper coincidence signals from a quasi-continuous excitation pattern. The background signal produced by accidental coincidences in the time difference representation is modeled using the non-coincident electron and photon spectra.

View Article and Find Full Text PDF

In nuclear fusion research, the effective ion charge Z, which characterizes the overall content of impurities, can be experimentally derived from the plasma electron-ion bremsstrahlung, given the electron density n and temperature T. At Wendelstein 7-X, a multichannel near-infrared spectrometer is installed to collect the plasma bremsstrahlung along 27 lines of sight covering more than half the plasma cross section, which provides information on Z over the entire plasma radius. To infer spatially resolved Z profiles, a Bayesian model is developed in the Minerva framework.

View Article and Find Full Text PDF

We present a framework for training artificial neural networks (ANNs) as surrogate Bayesian models for the inference of plasma parameters from diagnostic data collected at nuclear fusion experiments, with the purpose of providing a fast approximation of conventional Bayesian inference. Because of the complexity of the models involved, conventional Bayesian inference can require tens of minutes for analyzing one single measurement, while hundreds of thousands can be collected during a single plasma discharge. The ANN surrogates can reduce the analysis time down to tens/hundreds of microseconds per single measurement.

View Article and Find Full Text PDF

We report on the effects of electron collision and indirect ionization processes, occurring at photoexcitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes.

View Article and Find Full Text PDF

Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later.

View Article and Find Full Text PDF