In obesity, chronic membrane-localization of CD36 free fatty acid (FFA) translocase, but not other FFA transporters, enhances FFA uptake and intracellular lipid accumulation. This ectopic lipid accumulation promotes insulin resistance by inhibiting insulin-induced GLUT4 glucose transporter trafficking and glucose uptake. GLUT4 and CD36 cell surface delivery is triggered by insulin- and contraction-induced signaling, which share conserved downstream effectors.
View Article and Find Full Text PDFSkeletal muscle is responsible for the majority of glucose disposal following meals, and this is achieved by insulin-mediated trafficking of glucose transporter type 4 (GLUT4) to the cell membrane. The eight-protein exocyst trafficking complex facilitates targeted docking of membrane-bound vesicles, a process underlying the regulated delivery of fuel transporters. We previously demonstrated the role of exocyst subunit EXOC5 in insulin-stimulated GLUT4 exocytosis and glucose uptake in cultured rat skeletal myoblasts.
View Article and Find Full Text PDFSelenium is a nonmetal trace element that is critical for several redox reactions and utilized to produce the amino acid selenocysteine (Sec), which can be incorporated into selenoproteins. Selenocysteine lyase (SCL) is an enzyme which decomposes Sec into selenide and alanine, releasing the selenide to be further utilized to synthesize new selenoproteins. Disruption of the selenocysteine lyase gene () in mice ( or Scly KO) led to obesity with dyslipidemia, hyperinsulinemia, glucose intolerance and lipid accumulation in the hepatocytes.
View Article and Find Full Text PDFSelenium is an essential dietary micronutrient. Ingested selenium is absorbed by the intestines and transported to the liver where it is mostly metabolized to selenocysteine (Sec). Sec is then incorporated into selenoproteins, including selenoprotein P (SELENOP), which is secreted into plasma and serves as a source of selenium to other tissues of the body.
View Article and Find Full Text PDFSelenoprotein P (SelenoP) functions as a plasma transporter of selenium (Se) from liver to other tissues via incorporation into multiple selenocysteine (Sec) residues. Selenocysteine lyase (Scly) is an intracellular enzyme that decomposes Sec into selenide, providing Se for the synthesis of new selenoproteins. Both SelenoP and Scly are mostly produced by the liver.
View Article and Find Full Text PDFSelenium (Se) is an essential micronutrient known for its antioxidant properties and health benefits, attributed to its presence in selenoproteins as the amino acid, selenocysteine. Selenocysteine lyase (Scly) catalyzes hydrolysis of selenocysteine to selenide and alanine, facilitating re-utilization of Se for de novo selenoprotein synthesis. Previously, it was reported that male Scly mice develop increased body weight and body fat composition, and altered lipid and carbohydrate metabolism, compared to wild type mice.
View Article and Find Full Text PDF