Hydrogen sulfide (HS) is an endogenous gasotransmitter with cardioprotective and antiviral effects. In this work, new cysteine-selective nucleoside-HS-donor hybrid molecules were prepared by conjugating nucleoside biomolecules with a thiol-activatable dithioacetyl group. 5'-Dithioacetate derivatives were synthesized from the canonical nucleosides (uridine, adenosine, cytidine, guanosine and thymidine), and the putative 5'-thio metabolites were also produced from uridine and adenosine.
View Article and Find Full Text PDFHypoxanthine-tricyclano is a synthetic adenosine analogue, in which adenine and ribose have been replaced by hypoxanthine and a morpholino-derived tricyclic moiety, respectively. We investigated whether hypoxanthine-tricyclano could influence atrial inotropy and/or chronotropy, two important functions regulated by the A1 receptor, the main adenosine receptor type of the supraventricular myocardium. Paced left atria and spontaneously beating right atria, isolated from male, 30-35 weeks old, Wistar rats, were used.
View Article and Find Full Text PDFDespite the targeted- and immunotherapies used in the past decade, survival rate among patients with metastatic melanoma remains low, therefore, melanoma is responsible for the majority of skin cancer-related deaths. The ongoing investigation of natural antitumor agents, the nonpsychoactive cannabinoid, cannabigerol (CBG) found in Cannabis sativa is emerging as a promising candidate. CBG offers a potential therapeutic role in the treatment of melanoma demonstrating cell growth inhibition in some tumors.
View Article and Find Full Text PDFHydrogen sulfide (HS), a gasotransmitter, plays a crucial role in vasorelaxation, anti-inflammatory processes and mitigating myocardial ischemia/reperfusion-induced injury by regulating various signaling processes. We designed a water soluble HS-releasing ascorbic acid derivative, BM-164, to combine the beneficial cardiovascular and anti-inflammatory effects of HS with the excellent water solubility and antioxidant properties of ascorbic acid. DPPH antioxidant assay revealed that the antioxidant activity of BM-164 in the presence of a myocardial tissue homogenate (extract) increased continuously over the 120 min test interval due to the continuous release of HS from BM-164.
View Article and Find Full Text PDFIn the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent -acetylneuraminic acid derivatives is a promising approach to prevent influenza infection.
View Article and Find Full Text PDF(-)-Cannabidiol (CBD) and (-)-cannabigerol (CBG) are two major non-psychotropic phytocannabinoids that have many beneficial biological properties. However, due to their low water solubility and prominent first-pass metabolism, their oral bioavailability is moderate, which is unfavorable for medicinal use. Therefore, there is a great need for appropriate chemical modifications to improve their physicochemical and biological properties.
View Article and Find Full Text PDFAntioxidants (Basel)
September 2023
Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid that can be found in and possesses numerous pharmacological effects. Due to these promising effects, CBD can be used in a wide variety of diseases, for instance cardiovascular diseases. However, CBD, like tetrahydrocannabinol (THC), has low bioavailability, poor water solubility, and a variable pharmacokinetic profile, which hinders its therapeutic use.
View Article and Find Full Text PDFDrug-resistant Plasmodium falciparum (Pf) infections are a major burden on the population and the healthcare system. The establishment of Pf resistance to most existing antimalarial therapies has complicated the problem, and the emergence of resistance to artemisinin derivatives is even more concerning. It is increasingly difficult to cure malaria patients due to the limited availability of effective antimalarial drugs, resulting in an urgent need for more efficacious and affordable treatments to eradicate this disease.
View Article and Find Full Text PDFHerein, we report a stereoselective synthesis of a novel type of conformationally constrained nucleoside analogue in which the sugar part is replaced by a new symmetrical tricycle consisting of a morpholine ring condensed with two imidazolidines. 1,5-Dialdehydes obtained from trityl- and dimethoxytrityl-protected uridine, ribothymidine, inosine, cytidine, adenosine and guanosine by metaperiodate oxidation were reacted with ,-dibenzyl-1,2,3-triaminopropane; the latter reactant was produced using a new method that avoids explosive intermediates. Reactions of dialdehydes with propane-triamine cascade tricyclization resulted in the corresponding triaza-tricyclic derivatives bearing three new stereogenic centers in high yields.
View Article and Find Full Text PDFGram-negative bacteria possess intrinsic resistance to glycopeptide antibiotics so these important antibacterial medications are only suitable for the treatment of Gram-positive bacterial infections. At the same time, polymyxins are peptide antibiotics, structurally related to glycopeptides, with remarkable activity against Gram-negative bacteria. With the aim of breaking the intrinsic resistance of Gram-negative bacteria against glycopeptides, a polycationic vancomycin aglycone derivative carrying an n-decanoyl side chain and five aminoethyl groups, which resembles the structure of polymyxins, was prepared.
View Article and Find Full Text PDFThe first concise and efficient synthesis of some fluorine-containing morpholino nucleosides has been developed. One synthetic strategy was based on the oxidative ring cleavage of the vicinal diol unit of uridine, cytidine adenosine and guanosine derivatives, followed by cyclisation of the dialdehyde intermediates by double reductive amination with fluorinated primary amines to obtain various N-fluoroalkylated morpholinos. Another approach involved cyclisation of the diformyl intermediates with ammonia source, followed by dithiocarbamate formation and desulfurization-fluorination with diethylaminosulfur trifluoride yielding the corresponding morpholine-based nucleoside analogues with a N-CF element in their structure.
View Article and Find Full Text PDFPatients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2022
Pleuromutilin is a fungal diterpene natural product with antimicrobial properties, semisynthetic derivatives of which are used in veterinary and human medicine. The development of bacterial resistance to pleuromutilins is known to be very slow, which makes the tricyclic diterpene skeleton of pleuromutilin a very attractive starting structure for the development of new antibiotic derivatives that are unlikely to induce resistance. Here, we report the very first synthetic modifications of pleuromutilin and lefamulin at alkene position C19-C20, by two different photoinduced addition reactions, the radical thiol-ene coupling reaction, and the atom transfer radical additions (ATRAs) of perfluoroalkyl iodides.
View Article and Find Full Text PDFThe increase in antibiotic resistance among Gram-positive bacteria underscores the urgent need to develop new antibiotics. New antibiotics should target actively growing susceptible bacteria that are resistant to clinically accepted antibiotics including bacteria that are not growing or are protected in a biofilm environment. In this paper, we compare the in vitro activities of two new semisynthetic glycopeptide antibiotics, MA79 and ERJ390, with two clinically used glycopeptide antibiotics-vancomycin and teicoplanin.
View Article and Find Full Text PDFPharmaceuticals (Basel)
October 2021
The protracted global COVID-19 pandemic urges the development of new drugs against the causative agent SARS-CoV-2. The clinically used glycopeptide antibiotic, teicoplanin, emerged as a potential antiviral, and its efficacy was improved with lipophilic modifications. This prompted us to prepare new lipophilic apocarotenoid conjugates of teicoplanin, its pseudoaglycone and the related ristocetin aglycone.
View Article and Find Full Text PDFFor some time, glycopeptide antibiotics have been considered the last line of defense against Methicillin-resistant (MRSA). However, vancomycin resistance of Gram-positive bacteria is an increasingly emerging worldwide health problem. The mode of action of glycopeptide antibiotics is essentially the binding of peptidoglycan cell-wall fragments terminating in the d-Ala-d-Ala sequence to the carboxylate anion binding pocket of the antibiotic.
View Article and Find Full Text PDFBackground: Cardioprotective effects of HS are being suggested by numerous studies. Furthermore, HS plays a role in relaxation of vascular smooth muscle, protects against oxidative stress, and modulates inflammation. Long-term high-dose use of NSAIDs, such as ibuprofen, have been associated with enhanced cardiovascular risk.
View Article and Find Full Text PDFNucleoside and nucleic acid analogues are known to possess a considerable therapeutic potential. In this work, by coupling cysteine to nucleosides, we successfully synthesized compounds that may not only have interesting biological properties in their monomeric form, but can be used beyond that, for oligomerization, in order to produce new types of synthetic nucleic acids. We elaborated different strategies for the synthesis of cysteinyl nucleosides as monomers of cysteinyl nucleic acids using nucleophilic substitution or thiol-ene coupling as a synthetic tool, and utilised on two complementary nucleosides, uridine and adenosine.
View Article and Find Full Text PDFThe limited scope of antiviral drugs and increasing problem of antiviral drug resistance represent a global health threat. Glycopeptide antibiotics and their lipophilic derivatives have emerged as relevant inhibitors of diverse viruses. Herein, we describe a new strategy for the synthesis of dual hydrophobic and lipophobic derivatives of glycopeptides to produce selective antiviral agents without membrane-disrupting activity.
View Article and Find Full Text PDFInfluenza A and B viruses are a global threat to human health and increasing resistance to the existing antiviral drugs necessitates new concepts to expand the therapeutic options. Glycopeptide derivatives have emerged as a promising new class of antiviral agents. To avoid potential antibiotic resistance, these antiviral glycopeptides are preferably devoid of antibiotic activity.
View Article and Find Full Text PDFAntibiotic resistance is one of the major challenges in healthcare of our time. To meet this challenge, we designed and prepared guanidine and lipophilic guanidine derivatives of the glycopeptide antibiotic teicoplanin to armed them with activity against the most threatening nosocomial bacteria, multiresistant enterococci. From teicoplanin and its pseudoaglycone, a series of N-terminal guanidine derivatives have been prepared with free and amide C-terminal parts.
View Article and Find Full Text PDFThe photoinitiated thiol-ene addition reaction is a highly stereo- and regioselective, and environmentally friendly reaction proceeding under mild conditions, hence it is ideally suited for the synthesis of carbohydrate mimetics. A comprehensive study on UV-light-induced reactions of 2,3-unsaturated O-, C-, S- and N-glycosides with various thiols was performed. The effect of experimental parameters and structural variations of the alkenes and thiols on the efficacy and regio- and stereoselectivity of the reactions was systematically studied and optimized.
View Article and Find Full Text PDF