Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts.
View Article and Find Full Text PDFIntracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself.
View Article and Find Full Text PDFIn this work, we propose the use of shape-memory polymer as an anchoring system for a bladder sensor. The anchoring system was designed from a biomedical biodegradable water-based poly(ester-urethane) produced in an aqueous environment by using isophorone diisocyanate/hydrazine (hard segment) and poly(caprolactone diol)/2,2-bis (hydroxymethyl) propionic acid (soft segment) as the main reagents. Tensile strength and elongation-at-break deterioration upon degradation in synthetic urine were investigated.
View Article and Find Full Text PDFBrain implants provide exceptional tools to understand and restore cerebral functions. The utility of these devices depends crucially on their biocompatibility and long term viability. We addressed these points by implanting non-functional, NeuroProbes silicon probes, without or with hyaluronic acid (Hya), dextran (Dex), dexamethasone (DexM), Hya+DexM coating, into rat neocortex.
View Article and Find Full Text PDF