Exosomes have emerged as a valuable repository of novel biomarkers for human diseases such as chronic kidney disease (CKD). From a healthy control group, we performed microRNA (miRNA) profiling of urinary exosomes and compared it with a cell culture model of renal proximal tubular epithelial cells (RPTECs). Thereby, a large fraction of abundant urinary exosomal miRNAs could also be detected in exosomes derived from RPTECs, indicating them as a suitable model system for investigation of CKD.
View Article and Find Full Text PDFSGLT2 inhibitor-related nephroprotection is-at least partially-mediated by anti-inflammatory drug effects, as previously demonstrated in diabetic animal and human studies, as well as hyperglycemic cell culture models. We recently presented first evidence for anti-inflammatory potential of empagliflozin (Empa) under normoglycemic conditions in human proximal tubular cells (HPTC) by demonstrating Empa-mediated inhibition of IL-1β-induced MCP-1/CCL2 and ET-1 expression on the mRNA and protein level. We now add corroborating evidence on a genome-wide level by demonstrating that Empa attenuates the expression of several inflammatory response genes in IL-1β-induced (10 ng/mL) normoglycemic HPTCs.
View Article and Find Full Text PDFSGLT2 inhibitors (SGLT2i) slow the progression of chronic kidney disease; however, evidence for the underlying molecular mechanisms is scarce. We investigated SGLT2i-mediated effects on differential gene expression in two independent human proximal tubular cell (HPTC) lines (HK-2 and RPTEC/TERT1) at the mRNA and protein levels under normoglycemic conditions, utilizing IL-1β as a pro-inflammatory mediator. Microarray hybridization identified 259 genes that were uniformly upregulated by IL-1β (10 mg/mL) and downregulated by empagliflozin (Empa) (500 nM) after 24 h of stimulation in two independent HPTC lines ( = 2, each).
View Article and Find Full Text PDFLarge clinical trials demonstrated that SGLT2 inhibitors (SGLT2i) slow the progression of kidney function decline in type 2 diabetes. Because the underlying molecular mechanisms are largely unknown, we studied the effects of SGLT2i on gene expression in two human proximal tubular (PT) cell lines under normoglycemic conditions, utilizing two SGLT2i, namely empagliflocin and canagliflocin. Genome-wide expression analysis did not reveal substantial differences between these two SGLT2i.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a progressive pathological condition marked by a gradual loss of kidney function. Treatment of CKD is most effective when diagnosed at an early stage and patients are still asymptomatic. However, current diagnostic biomarkers (e.
View Article and Find Full Text PDFIn response to tubular injury, production, and secretion of cytokines, chemokines or extracellular matrix components by human proximal tubular epithelial cells (PTC) directly contribute to the development of tubulointerstitial inflammation and fibrosis. Here, we report a novel stimulatory and synergistic effect of oncostatin M (OSM) on proinflammatory CCL2/MCP-1 mRNA expression in human PTC. Although OSM inhibited IL-1β- and TNF-α-mediated mRNA expression of matricellular proteins TSP-1 and tenascin C (TNC), it acted synergistically with these two proinflammatory cytokines to induce CCL2 mRNA expression for up to 24 h.
View Article and Find Full Text PDFChronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the macrolide calcineurin inhibitor tacrolimus (FK-506) induced TGF-β-like effects, manifested by increased expression of NAD(P)H-oxidase 4 (Nox4), transgelin, tropomyosin 1, and procollagen α1(V) mRNA after three days.
View Article and Find Full Text PDFMatricellular proteins play a critical role in the development of tubulointerstitial fibrosis and renal disease progression. Connective tissue growth factor (CTGF/CCN2), a CCN family member of matricellular proteins, represents an important mediator during development of glomerular and tubulointerstitial fibrosis in progressive kidney disease. We have recently reported that oncostatin M (OSM) is a potent inhibitor of TGF-β1-induced CTGF expression in human proximal tubular cells (PTC).
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2011
Matricellular proteins in the kidney have been associated with the development of tubulointerstitial fibrogenesis and the progression of renal disease. This study investigated potential antifibrotic effects of the cytokine oncostatin M (OSM) in human proximal tubule cells (PTC), particularly with regard to inhibition of profibrotic events initiated by TGF-β1. In human PTC, OSM diminished transforming growth factor (TGF)-β1-induced expression of the transcriptional epithelial-mesenchymal transition mediator FoxC2.
View Article and Find Full Text PDFNeuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS).
View Article and Find Full Text PDFProteinuria, inflammation, chronic hypoxia, and rarefaction of peritubular capillaries contribute to the progression of renal disease by affecting proximal tubular epithelial cells (PTECs). To study the transcriptional response that separates patients with a stable course from those with a progressive course of disease, we isolated PTECs by laser capture microdissection from cryocut tissue sections of patients with proteinuric glomerulopathies (stable n=20, progressive n=11) with a median clinical follow-up of 26 months. Gene-expression profiling and a systems biology analysis identified activation of intracellular vascular endothelial growth factor (VEGF) signaling and hypoxia response pathways in progressive patients, which was associated with upregulation of hypoxia-inducible-factor (HIF)-1alpha and several HIF target genes, such as transferrin, transferrin-receptor, p21, and VEGF-receptor 1, but downregulation of VEGF-A.
View Article and Find Full Text PDFBortezomib has been introduced recently in the therapy of multiple myeloma (MM), a disease that is frequently associated with progressive renal failure. Because bortezomib-based therapy has been reported to lead to a rapid recovery of kidney function in patients with MM, we decided to study its direct effects in proximal tubular epithelial cells (PTCs) compared with glomerular mesangial cells (GMCs). After 24 h of stimulation, 50 nM bortezomib led to a 6.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2008
Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself.
View Article and Find Full Text PDFGrowing evidence suggests that a proportion of interstitial myofibroblasts detected during renal tubulointerstitial fibrosis originates from tubular epithelial cells by a process called epithelial-mesenchymal transition (EMT). The IL-6-type cytokine oncostatin M (OSM) has been recently implicated in the induction of EMT. We investigated OSM effects on the expression of both cell-cell contact proteins and mesenchymal markers and studied OSM-induced intracellular signaling mechanisms associated with these events in human proximal tubular cells.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2007
During systemic acidosis, renal proximal tubular cells exhibit enhanced rates of bicarbonate and ammonium ion synthesis and undergo extensive hypertrophy. The former adaptations are accomplished, in part, by increased expression of glutaminase (GA). LLC-PK(1)-FBPase+ cells, a gluconeogenic line of porcine kidney cells, exhibit a rapid activation of the ERK1/2 and p38 MAPK pathways and a two- to threefold increase in GA mRNA when transferred to acidic medium (pH 6.
View Article and Find Full Text PDFThe MEK1-ERK1/2 signaling pathway has been implicated in the regulation of renal epithelial cell proliferation, epithelial-to-mesenchymal transition and the induction of an invasive cell phenotype. Much less information is available about the MEK5-ERK5 module and its role in renal epithelial cell proliferation and differentiation. In the present study we have investigated the regulation of these two families of extracellular signal-regulated kinases in epidermal growth factor (EGF)-stimulated human kidney-2 (HK-2) cells and a possible interaction between ERK1/2 and ERK5.
View Article and Find Full Text PDFFrom the site of transmission at mucosal surfaces, HIV is thought to be transported by DCs to lymphoid tissues. To initiate migration, HIV needs to activate DCs. This activation, reflected by intra- and extracellular changes in cell phenotype, is investigated in the present study.
View Article and Find Full Text PDFCyclooxygenase-2 (COX-2) over-expression is critically involved in tumor formation. Intracellular pH (pHi) has been shown to be alkaline in cancer cells, and to be an important trigger for cell proliferation. This study therefore analyzed the relationship between pHi and COX-2 expression.
View Article and Find Full Text PDFConstitutive activation of the MAPK/ERK kinase (MEK)1-ERK2 signaling module in Madin-Darby canine kidney (MDCK)-C7 cells disrupts their ability to form cyst-like structures in collagen gels and induces an invasive, myofibroblast-like phenotype. However, the reversibility of these cellular events, as well as the relative role of both MEK isoforms (MEK1 and MEK2) and both ERK isoforms (ERK1 and ERK2) during these processes, has not yet been investigated. We now report that loss of constitutively active MEK1 (caMEK1) and, thus, loss of active ERK1/2 in C7caMEK1 cells is associated with increased MEK2 protein expression, reexpression of ERK1 protein, and epithelial redifferentiation of these cells.
View Article and Find Full Text PDFReplicative senescence of human fibroblasts is a widely used cellular model for human aging. While it is clear that telomere erosion contributes to the development of replicative senescence, it is assumed that additional factors contribute to the senescent phenotype. The free radical theory of aging suggests that oxidative damage is a major cause of aging; furthermore, the expression of activated oncogenes, such as oncogenic Ras, can induce premature senescence in primary cells.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2002
LLC-PK(1)-FBPase(+) cells are a gluconeogenic and pH-responsive renal proximal tubule-like cell line. On incubation with acidic medium (pH 6.9), LLC-PK(1)-FBPase(+) cells exhibit an increased rate of ammonia production as well as increases in glutaminase and phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels and enzyme activities.
View Article and Find Full Text PDFAlthough differentiated cells will usually maintain their specialized character, conversion of cellular specificities can be observed during adaptation or reparative regeneration. In pathological conditions, such as inflammation and carcinogenesis, even highly specialized cells can alter their properties, leading to a deranged control of cell differentiation and/or proliferation. Mitogen-activated protein kinases are central regulators of these processes.
View Article and Find Full Text PDF