Publications by authors named "Herbert Sauro"

Article Synopsis
  • Metabolic control analysis (MCA) has evolved to study how cells manage metabolism by adjusting enzyme activity, now applied in a whole-cell context to understand growth-rate optimization through protein concentration.
  • The research shows that elementary flux modes (EFMs) are the most efficient metabolic networks, determined by protein-concentration constraints needed for maximizing growth.
  • Using data from S. cerevisiae and E. coli, the study illustrates how specific metabolic patterns emerge under different growth conditions, aiming to renew interest in MCA for uncovering universal biochemical principles across species.
View Article and Find Full Text PDF

The CRISPR-Cas system has enabled the development of sophisticated, multigene metabolic engineering programs through the use of guide RNA-directed activation or repression of target genes. To optimize biosynthetic pathways in microbial systems, we need improved models to inform design and implementation of transcriptional programs. Recent progress has resulted in new modeling approaches for identifying gene targets and predicting the efficacy of guide RNA targeting.

View Article and Find Full Text PDF

Predictive models of signaling pathways have proven to be difficult to develop. Traditional approaches to developing mechanistic models rely on collecting experimental data and fitting a single model to that data. This approach works for simple systems but has proven unreliable for complex systems such as biological signaling networks.

View Article and Find Full Text PDF

In this paper, a set of Python methods is described that can be used to compute the frequency response of an arbitrary biochemical network given any input and output. Models can be provided in standard SBML or Antimony format. The code takes into account any conserved moieties so that this software can be used to also study signaling networks where moiety cycles are common.

View Article and Find Full Text PDF

We describe a web-based tool, MakeSBML (https://sys-bio.github.io/makesbml/), that provides an installation-free application for creating, editing, and searching the Biomodels repository for SBML-based models.

View Article and Find Full Text PDF

Antimony is a high-level, human-readable text-based language designed for defining and sharing models in the systems biology community. It enables scientists to describe biochemical networks and systems using a simple and intuitive syntax. It allows users to easily create, modify, and distribute reproducible computational models.

View Article and Find Full Text PDF

Biochemical reaction networks perform a variety of signal processing functions, one of which is computing the integrals of signal values. This is often used in integral feedback control, where it enables a system's output to respond to changing inputs, but to then return exactly back to some pre-determined setpoint value afterward. To gain a deeper understanding of how biochemical networks are able to both integrate signals and perform integral feedback control, we investigated these abilities for several simple reaction networks.

View Article and Find Full Text PDF

Modern biological research is increasingly informed by computational simulation experiments, which necessitate the development of methods for annotating, archiving, sharing, and reproducing the conducted experiments. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments.

View Article and Find Full Text PDF

Biology is perhaps the most complex of the sciences, given the incredible variety of chemical species that are interconnected in spatial and temporal pathways that are daunting to understand. Their interconnections lead to emergent properties such as memory, consciousness, and recognition of self and non-self. To understand how these interconnected reactions lead to cellular life characterized by activation, inhibition, regulation, homeostasis, and adaptation, computational analyses and simulations are essential, a fact recognized by the biological communities.

View Article and Find Full Text PDF

Cellular signal transduction takes place through a network of phosphorylation cycles. These pathways take the form of a multi-layered cascade of cycles. This work focuses on the sensitivity of single, double and length cycles.

View Article and Find Full Text PDF
Article Synopsis
  • Design patterns are general solutions to common problems, originally created by architects and computer scientists for better design abstraction.
  • This text applies design patterns to cell biology, categorizing them into creational, structural, and behavioral patterns related to cell reaction networks.
  • The approach offers new insights into various biological systems, including the E. coli central metabolic network and yeast pheromone response signaling.
View Article and Find Full Text PDF

Motivation: Developing biochemical models in systems biology is a complex, knowledge-intensive activity. Some modelers (especially novices) benefit from model development tools with a graphical user interface. However, as with the development of complex software, text-based representations of models provide many benefits for advanced model development.

View Article and Find Full Text PDF

Motivation: Annotations of biochemical models provide details of chemical species, documentation of chemical reactions, and other essential information. Unfortunately, the vast majority of biochemical models have few, if any, annotations, or the annotations provide insufficient detail to understand the limitations of the model. The quality and quantity of annotations can be improved by developing tools that recommend annotations.

View Article and Find Full Text PDF

Design patterns are generalized solutions to frequently recurring problems. They were initially developed by architects and computer scientists to create a higher level of abstraction for their designs. Here, we extend these concepts to cell biology in order to lend a new perspective on the evolved designs of cells' underlying reaction networks.

View Article and Find Full Text PDF

Tissue Forge is an open-source interactive environment for particle-based physics, chemistry and biology modeling and simulation. Tissue Forge allows users to create, simulate and explore models and virtual experiments based on soft condensed matter physics at multiple scales, from the molecular to the multicellular, using a simple, consistent interface. While Tissue Forge is designed to simplify solving problems in complex subcellular, cellular and tissue biophysics, it supports applications ranging from classic molecular dynamics to agent-based multicellular systems with dynamic populations.

View Article and Find Full Text PDF

Signal transduction from a cell's surface to cytoplasmic and nuclear targets takes place through a complex network of interconnected pathways. Phosphorylation cycles are common components of many pathways and may take the form of a multi-layered cascade of cycles or incorporate species with multiple phosphorylation sites that effectively create a sequence of cycles with increasing states of phosphorylation. This work focuses on the frequency response and sensitivity of such systems, two properties that have not been thoroughly examined.

View Article and Find Full Text PDF

Biology is perhaps the most complex of the sciences, given the incredible variety of chemical species that are interconnected in spatial and temporal pathways that are daunting to understand. Their interconnections lead to emergent properties such as memory, consciousness, and recognition of self and non-self. To understand how these interconnected reactions lead to cellular life characterized by activation, inhibition, regulation, homeostasis, and adaptation, computational analyses and simulations are essential, a fact recognized by the biological communities.

View Article and Find Full Text PDF

We describe a web-based tool, MakeSBML (https://sys-bio.github.io/makesbml/), that provides an installation-free application for creating, editing, and searching the Biomodels repository for SBML-based models.

View Article and Find Full Text PDF

SBcoyote is an open-source cross-platform biochemical reaction viewer and editor released under the liberal MIT license. It is written in Python and uses wxPython to implement the GUI and the drawing canvas. It supports the visualization and editing of compartments, species, and reactions.

View Article and Find Full Text PDF

SBcoyote is an open-source cross-platform biochemical reaction viewer and editor released under the liberal MIT license. It is written in Python and uses wxPython to implement the GUI and the drawing canvas. It supports the visualization and editing of compartments, species, and reactions.

View Article and Find Full Text PDF

Building mechanistic models of kinase-driven signaling pathways requires quantitative measurements of protein phosphorylation across physiologically relevant conditions, but this is rarely done because of the insensitivity of traditional technologies. By using a multiplexed deep phosphoproteome profiling workflow, we were able to generate a deep phosphoproteomics dataset of the EGFR-MAPK pathway in non-transformed MCF10A cells across physiological ligand concentrations with a time resolution of <12 min and in the presence and absence of multiple kinase inhibitors. An improved phosphosite mapping technique allowed us to reliably identify >46,000 phosphorylation sites on >6600 proteins, of which >4500 sites from 2110 proteins displayed a >2-fold increase in phosphorylation in response to EGF.

View Article and Find Full Text PDF

Motivation: Annotations of biochemical models provide details of chemical species, documentation of chemical reactions, and other essential information. Unfortunately, the vast majority of biochemical models have few, if any, annotations, or the annotations provide insufficient detail to understand the limitations of the model. The quality and quantity of annotations can be improved by developing tools that recommend annotations.

View Article and Find Full Text PDF

Computational models are increasingly used in high-impact decision making in science, engineering, and medicine. The National Aeronautics and Space Administration (NASA) uses computational models to perform complex experiments that are otherwise prohibitively expensive or require a microgravity environment. Similarly, the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have began accepting models and simulations as forms of evidence for pharmaceutical and medical device approval.

View Article and Find Full Text PDF
Article Synopsis
  • Many scientific studies struggle with reproducibility, especially in computational modeling of biochemical networks, due to a lack of formal training and resources.
  • The chapter highlights useful software tools and standardized formats to enhance reproducibility and offers practical suggestions, encouraging the adoption of software development best practices like automation and version control.
  • To aid understanding, a Jupyter Notebook is provided, showcasing essential steps to build a reproducible biochemical network model.
View Article and Find Full Text PDF

The reproducibility of scientific research is crucial to the success of the scientific method. Here, we review the current best practices when publishing mechanistic models in systems biology. We recommend, where possible, to use software engineering strategies such as testing, verification, validation, documentation, versioning, iterative development, and continuous integration.

View Article and Find Full Text PDF