We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression.
View Article and Find Full Text PDFDiffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging.
View Article and Find Full Text PDFBackground: Patients with long-standing ulcerative colitis require repeated endoscopies for early detection of neoplasias, which, however, are frequently missed by standard colonoscopy. Fluorescence-guided colonoscopy is known to improve the detection rate but the long-term effects of fluorescence-guided colonoscopy are unknown.
Methods: Colitis patients with negative findings at index fluorescence-guided colonoscopy entered a prospective long-term study with conventional colonoscopies at 2-year intervals.
We present a scanning time-domain fluorescence mammograph capable to image the distribution of a fluorescent contrast agent within a female breast, slightly compressed between two parallel glass plates, with high sensitivity. Fluorescence of the contrast agent is excited using a near infrared picosecond diode laser module. Four additional picosecond diode lasers with emission wavelengths between 660 and 1066 nm allow to measure the intrinsic optical properties of the breast tissue.
View Article and Find Full Text PDFPurpose: To assess early- and late-fluorescence near-infrared imaging, corresponding to the vascular (early-fluorescence) and extravascular (late-fluorescence) phases of indocyanine green (ICG) enhancement, for breast cancer detection and benign versus malignant breast lesion differentiation.
Materials And Methods: The study was approved by the ethical review board; all participants provided written informed consent. Twenty women with 21 breast lesions were examined with near-infrared imaging before, during, and after intravenous injection of ICG.
Background: Dysplasia in ulcerative colitis is frequently missed with 4-quadrant biopsies. An experimental setup recording delayed fluorescence spectra simultaneously with white light endoscopy was recently developed.
Objective: We compared detection of invisible flat intraepithelial neoplasia with protoporphyrin IX fluorescence and standard 4-quadrant biopsies.
Using scanning time-domain instrumentation we recorded fluorescence projection mammograms on few breast cancer patients prior, during and after infusion of indocyanine green (ICG), while monitoring arterial ICG concentration by transcutaneous pulse densitometry. Late-fluorescence mammograms recorded after ICG had been largely cleared from the blood by the liver, showed invasive carcinomas at high contrast over a rather homogeneous background, whereas benign lesions did not produce (focused) fluorescence contrast. During infusion, tissue concentration contrast and hence fluorescence contrast is determined by intravascular contributions, whereas late-fluorescence mammograms are dominated by contributions from protein-bound ICG extravasated into the interstitium, reflecting relative microvascular permeabilities of carcinomas and normal breast tissue.
View Article and Find Full Text PDFWe report on the nonlinear reconstruction of local absorption and fluorescence contrast in tissuelike scattering media from measured time-domain diffuse reflectance and transmittance of laser as well as laser-excited fluorescence radiation. Measurements were taken at selected source-detector offsets using slablike diffusely scattering and fluorescent phantoms containing fluorescent heterogeneities. Such measurements simulate in vivo data that would be obtained employing a scanning, time-domain fluorescence mammograph, where the breast is gently compressed between two parallel glass plates, and source and detector optical fibers scan synchronously at various source-detector offsets, allowing the recording of laser and fluorescence mammograms.
View Article and Find Full Text PDFUsing a statistical (chi-square) test on simulated data and a realistic noise model derived from the system's hardware we study the performance of diffuse optical tomography systems for fluorescence imaging. We compare the predicted smallest size of detectable lesions at various positions in slab and cup geometry and model how detection sensitivity depends on breast compression and lesion fluorescence contrast. Our investigation shows that lesion detection is limited by relative noise in slab geometry and by absolute noise in cup geometry.
View Article and Find Full Text PDFPurpose: To propose and illustrate a safety concept for multichannel transmit coils in MRI based on finite-differences time-domain (FDTD) simulations and validated by measurements.
Materials And Methods: FDTD simulations of specific absorption rate (SAR) distributions in a cylindrical agarose phantom were carried out for various radio frequency (RF) driving conditions of a four-element coil array. Additionally, maps of transmit amplitude, signal phase, and temperature rise following RF heating were measured by MRI.
Technol Cancer Res Treat
October 2005
Optical mammography is one of several new techniques for breast cancer detection and characterization presently under development for clinical use that provide information other than morphologic, in particular on the biochemical and metabolic state of normal and diseased tissue. In breast tissue, scattering of red to near infrared (NIR) light dominates absorption and NIR light may penetrate several centimeters through the breast. Optical mammography avoids the use of ionizing radiation and offers the power of diffuse optical spectroscopy.
View Article and Find Full Text PDFA semi-parametric approach for the quantitative analysis of magnetic resonance (MR) spectra is proposed and an uncertainty analysis is given. Single resonances are described by parametric models or by parametrized in vitro spectra and the baseline is determined nonparametrically by regularization. By viewing baseline estimation in a reproducing kernel Hilbert space, an explicit parametric solution for the baseline is derived.
View Article and Find Full Text PDFWe report on the reconstruction of absorption and reduced scattering coefficients of breast tissue in vivo of a patient with mastopathic disease. Distributions of times of flight of photons through the compressed breast were recorded by paraxial scanning. From data measured at four different source-detector offsets optical properties were reconstructed within the linear Rytov approximation by a fast inverse Fourier space method.
View Article and Find Full Text PDFUsing a triple wavelength (670 nm, 785 nm, 843/884 nm) scanning laser-pulse mammograph we recorded craniocaudal and mediolateral projection optical mammograms of 154 patients, suspected of having breast cancer. From distributions of times of flight of photons recorded at typically 1000-2000 scan positions, optical mammograms were derived displaying (inverse) photon counts in selected time windows, absorption and reduced scattering coefficients or total haemoglobin concentration and blood oxygen saturation. Optical mammograms were analysed by comparing them with x-ray and MR mammograms, including results of histopathology, attributing a subjective visibility score to each tumour assessed.
View Article and Find Full Text PDFThe impact of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) on anxiety-related behavior and related cerebral activation has facilitated the understanding of neurobiological mechanisms of anxiety. However, the influence of the 5-HTTLPR genotype on hippocampal neuronal development and neurochemistry, which is relevant to anxiety behavior, has not been investigated. In 38 healthy subjects, absolute concentrations of N-acetylaspartate (NAA) were measured as a main surrogate parameter for hippocampal neurochemistry on a 3-T scanner.
View Article and Find Full Text PDFWe report on multidistance time-resolved diffuse reflectance spectroscopy of the head of a healthy adult after intravenous administration of a bolus of indocyanine green. Intracerebral and extracerebral changes in absorption are deduced from moments (integral, mean time of flight, and variance) of the distributions of times of flight of photons (DTOFs), recorded simultaneously at four different source-detector separations. We calculate the sensitivity factors converting depth-dependent changes in absorption into changes of moments of DTOFs by Monte Carlo simulations by using a layered model of the head.
View Article and Find Full Text PDFUsing a dual-wavelength (670 nm, 785 nm) time-domain scanning instrument we have recorded optical mammograms of 93 patients suspected of having breast cancer which was subsequently assessed histologically. Among 65 histologically confirmed carcinomas, 54 were detectable in at least one of two optical mammograms recorded of each tumour-bearing breast in craniocaudal and mediolateral projection. Optical mammograms were based on photon counts in selected time windows of measured distributions of times of flight of photons.
View Article and Find Full Text PDFA new adiabatic pulse for population inversion and the principles of its design are presented. The pulse shape is characterized by the combination of two constraints. (i) Adiabatic following of the central isochromat of the spectral region of interest occurs with constant, possibly small adiabaticity parameter; thereby, the center isochromat gets most efficiently inverted.
View Article and Find Full Text PDFHyperpolarized (129)Xe (HpXe) NMR not only holds promise for functional lung imaging, but for measurements of tissue perfusion as well. To investigate human brain perfusion, several time-series of (129)Xe MR spectra were recorded from one healthy volunteer after HpXe inhalation. The time-dependent amplitudes of the MR spectra were analyzed by using a compartment model for xenon uptake modified to account for the loss of (129)Xe polarization due to RF-excitation and for the breathhold technique used in the experiments.
View Article and Find Full Text PDFA method for quantitative determination of the glutamate (Glu) concentration in human brain using PRESS-based single voxel MR spectroscopy (MRS) at 3 T has been developed and validated by repeatedly analyzing voxels comprising the anterior cingulate cortex (acc) and the left hippocampus (hc) in 40 healthy volunteer brains. At an optimum echo time of 80 ms, the C4 resonance of Glu appears well resolved and separated from major interferents, that is, glutamine and N-acetylaspartate. As a complementary method, a multiple quantum coherence filter sequence for Glu was employed.
View Article and Find Full Text PDFWe used a flow cytometer together with an intensified CCD camera to record spatially resolved light scattering from micrometer-sized single particles and single oriented particle agglomerates. Experimental differential cross sections of an oriented dumbbell made from two identical polystyrene spheres were compared with theoretical values calculated within the discrete dipole approximation, and good agreement was achieved. Furthermore, characteristic two-dimensional patterns of the scattered-light intensity were recorded for single blood cells, yielding information on the cells' shape and volume.
View Article and Find Full Text PDFA novel method for the determination of the optical properties of tissue from time-domain measurements is presented. The data analysis is based on the evaluation of the first moment and the second centralized moment, i.e.
View Article and Find Full Text PDFMammograms of 35 patients suspected of breast cancer were taken along craniocaudal and mediolateral projections with a dual-wavelength scanning laser pulse mammograph measuring time-resolved transmittance. Among 26 tumors known from routine clinical diagnostics, 17 tumors were detected retrospectively in optical mammograms. Effective tumor optical properties derived from a homogeneous model were used to deduce physiological information.
View Article and Find Full Text PDFTo assess the applicability of magnetic resonance spectroscopy (MRS) for long-term follow-up of neurological diseases a longitudinal 1H-MRS study at 3 T was carried out on ten patients having relapsing-remitting multiple sclerosis (MS) who, after baseline examination, received interferon-beta (IFN) 1b. At 8-20 examinations within up to 34 months absolute concentrations of N-acetylaspartate (NAA), total creatine (tG), and choline-containing compounds (tCho) were determined in a large non-enhancing lesion and contralateral normal appearing white matter (NAWM). MR spectra were analyzed using a novel time domain-frequency domain method including non-parametric background characterization.
View Article and Find Full Text PDF