Self-motion is an essential but often overlooked component of sound localisation. As the directional information of a source is implicitly contained in head-centred acoustic cues, that acoustic input needs to be continuously combined with sensorimotor information about the head orientation in order to decode to a world-centred frame of reference. When utilised, head movements significantly reduce ambiguities in the directional information provided by the incoming sound.
View Article and Find Full Text PDFAmong various types of memory, working memory (WM) plays a crucial role in reasoning, decision-making, and behavior regulation. Neuromorphic computing is a well-established engineering approach that offers promising avenues for advancing our understanding of WM processes by mimicking the structure and operation of the human brain using electronic technology. In this work, a digital neuromorphic system is proposed and then implemented in hardware to illustrate the real-time WM process based on the spiking neuron-astrocyte network (SNAN).
View Article and Find Full Text PDFRecent interest in dynamic sound localization models has created a need to better understand the head movements made by humans. Previous studies have shown that static head positions and small oscillations of the head obey Donders' law: for each facing direction there is one unique three-dimensional orientation. It is unclear whether this same constraint applies to audiovisual localization, where head movement is unrestricted and subjects may rotate their heads depending on the available auditory information.
View Article and Find Full Text PDFEcholocating bats are among the most social and vocal of all mammals. These animals are ideal subjects for functional MRI (fMRI) studies of auditory social communication given their relatively hypertrophic limbic and auditory neural structures and their reduced ability to hear MRI gradient noise. Yet, no resting-state networks relevant to social cognition (e.
View Article and Find Full Text PDFAstrocytes play a significant role in the working memory (WM) mechanism, yet their contribution to spiking neuron-astrocyte networks (SNAN) is underexplored. This study proposes a non-probabilistic SNAN incorporating a self-repairing (SR) mechanism through endocannabinoid pathways to facilitate WM function. Four experiments were conducted with different damaging patterns, replicating close-to-realistic synaptic impairments.
View Article and Find Full Text PDFNatural listening involves a constant deployment of small head movement. Spatial listening is facilitated by head movements, especially when resolving front-back confusions, an otherwise common issue during sound localization under head-still conditions. The present study investigated which acoustic cues are utilized by human listeners to localize sounds using small head movements (below ±10° around the center).
View Article and Find Full Text PDFDuring vocal communication, the spectro-temporal structure of vocalizations conveys important contextual information. Bats excel in the use of sounds for echolocation by meticulous encoding of signals in the temporal domain. We therefore hypothesized that for social communication as well, bats would excel at detecting minute distortions in the spectro-temporal structure of calls.
View Article and Find Full Text PDFIn most animals, natural stimuli are characterized by a high degree of redundancy, limiting the ensemble of ecologically valid stimuli to a significantly reduced subspace of the representation space. Neural encodings can exploit this redundancy and increase sensing efficiency by generating low-dimensional representations that retain all information essential to support behavior. In this study, we investigate whether such an efficient encoding can be found to support a broad range of echolocation tasks in bats.
View Article and Find Full Text PDFThe pale spear-nosed bat Phyllostomus discolor, a microchiropteran bat, is well established as an animal model for research on the auditory system, echolocation and social communication of species-specific vocalizations. We have created a brain atlas of Phyllostomus discolor that provides high-quality histological material for identification of brain structures in reliable stereotaxic coordinates to strengthen neurobiological studies of this key species. The new atlas combines high-resolution images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) at 49 rostrocaudal levels, at intervals of 350 µm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2020
Sonar sensors are universally applied in autonomous vehicles such as robots and driverless cars as they are inexpensive, energy-efficient, and provide accurate range measurements; however, they have some limitations. Their measurements can lead to ambiguous estimates and echo clutter can hamper target detection. In nature, echolocating bats experience similar problems when searching for food, especially if their food source is close to vegetation, as is the case for gleaning bats and nectar-feeding bats.
View Article and Find Full Text PDFMost objects and vegetation making up the habitats of echolocating bats return a multitude of overlapping echoes. Recent evidence suggests that the limited temporal and spatial resolution of bio-sonar prevents bats from separately perceiving the objects giving rise to these overlapping echoes. Therefore, bats often operate under conditions where their ability to localize obstacles is severely limited.
View Article and Find Full Text PDFFiltering relevant signals from noisy sensory input is a crucial challenge for animals [1, 2]. Many bats are acoustic specialists relying on sound to find prey. They discern salient acoustic signals from irrelevant background masking noise.
View Article and Find Full Text PDFEcholocating bats are known to fly and forage in complete darkness, using the echoes of their actively emitted calls to navigate and to detect prey. However, under dim light conditions many bats can also rely on vision. Many flying animals have been shown to navigate by optic flow information and, recently, bats were shown to exploit echo-acoustic flow to navigate through dark habitats.
View Article and Find Full Text PDFEcholocating bats are the only mammals engaging in airborne pursuit. In this paper, we implement a reactive model of sonar based prey pursuit in bats. Our simulations include a realistic prey localization mechanism as well as a model of the bat's motor behavior.
View Article and Find Full Text PDFIn this paper, we present a method for synchronizing high-speed audio and video recordings of bio-acoustic experiments. By embedding a random signal into the recorded video and audio data, robust synchronization of a diverse set of sensor streams can be performed without the need to keep detailed records. The synchronization can be performed using recording devices without dedicated synchronization inputs.
View Article and Find Full Text PDFLocalization systems are increasingly valuable, but their location estimates are only useful when the uncertainty of the estimate is known. This uncertainty is currently calculated as the location error given a ground truth, which is then used as a static measure in sometimes very different environments. In contrast, we propose the use of the conditional entropy of a posterior probability distribution as a complementary measure of uncertainty.
View Article and Find Full Text PDFEcholocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation.
View Article and Find Full Text PDFBat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified.
View Article and Find Full Text PDFAt first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging.
View Article and Find Full Text PDFEcholocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight ('echo-acoustic flow').
View Article and Find Full Text PDFWe describe an augmented topological map as an alternative for the proposed bicoded map. Inverting causality, the special nature of the vertical dimension is then no longer fixed a priori and the cause of specific navigation behavior, but a consequence of the combination of the specific geometry of the experimental environment and the motor capabilities of the experimental animals.
View Article and Find Full Text PDFBats of the family Rhinolophidae emit their echolocation calls through their nostrils and feature elaborate noseleaves shaping the directionality of the emissions. The calls of these bats consist of a long constant-frequency component preceded and/or followed by short frequency-modulated sweeps. While Rhinolophidae are known for their physiological specializations for processing the constant frequency part of the calls, previous evidence suggests that the noseleaves of these animals are tuned to the frequencies in the frequency modulated components of the calls.
View Article and Find Full Text PDFWe propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world.
View Article and Find Full Text PDF