Publications by authors named "Herbert Palme"

Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth's core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth.

View Article and Find Full Text PDF

The compositional variations among the chondrites inform us about cosmochemical fractionation processes during condensation and aggregation of solid matter from the solar nebula. These fractionations include: (i) variable Mg-Si-RLE ratios (RLE: refractory lithophile element), (ii) depletions in elements more volatile than Mg, (iii) a cosmochemical metal-silicate fractionation, and (iv) variations in oxidation state. Moon- to Mars-sized planetary bodies, formed by rapid accretion of chondrite-like planetesimals in local feeding zones within 106 years, may exhibit some of these chemical variations.

View Article and Find Full Text PDF

The use of hafnium-tungsten chronometry to date the Moon is hampered by cosmogenic tungsten-182 production mainly by neutron capture of tantalum-181 at the lunar surface. We report tungsten isotope data for lunar metals, which contain no 181Ta-derived cosmogenic 182W. The data reveal differences in indigenous 182W/184W of lunar mantle reservoirs, indicating crystallization of the lunar magma ocean 4.

View Article and Find Full Text PDF

Rare earth element (REE) data from two ordinary chondrite chondrules show distinct negative chondrite-normalized concentration anomalies of samarium, europium, and ytterbium. The peculiar patterns may be the result of REE gas/solid fractionation at an oxygen fugacity lower than has been assumed for the canonical solar nebula. We suggest that the two ordinary chondrite chondrules acquired the fractionated REE patterns by incorporation of highly reduced, ultrarefractory condensates in their precursors.

View Article and Find Full Text PDF