A series of indane acetic acid derivatives were prepared which show a spectrum of activity as insulin sensitizers and PPAR-alpha and PPAR-delta ligands. In vivo data are presented for insulin sensitizers with selectivity for PPAR-delta over PPAR-alpha.
View Article and Find Full Text PDFModulation of cAMP levels has been linked to insulin secretion in preclinical animal models and in humans. The high expression of PDE-10A in pancreatic islets suggested that inhibition of this enzyme may provide the necessary modulation to elicit increased insulin secretion. Using an HTS approach, we have identified quinoline-based PDE-10A inhibitors as insulin secretagogues in vitro.
View Article and Find Full Text PDFModulation of PPAR activities represents an attractive approach for the treatment of diabetes with associated cardiovascular complications. The indanylacetic acid structural motif has proven useful in the generation of potent and tunable PPAR ligands. Modification of the substituents on the linker and the heterocycle tail group allowed for the modulation of the selectivity at the different receptor subtypes.
View Article and Find Full Text PDF