Publications by authors named "Herbert C Georg"

The photophysics and nonlinear optical responses of a novel nitrothiazol-methoxyphenol molecule were investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods with the polarizable continuum model to take the solvent effect into account. Special attention is paid to the description of the lowest absorption band, characterized as a strong π → π* state in the visible region of the spectrum. The TD-DFT emission spectrum analysis reveals a significant Stokes shift of more than 120 nm for the π → π* state in gas phase condition.

View Article and Find Full Text PDF

We investigate the effects of solvents on the geometry, absorption spectrum, and first hyperpolarizability of six push-pull molecules, each containing a 4,5-dicyanoimidazole group as an electron acceptor and a N,N-dimethylamino group as an electron donor, with systematically extended π-conjugated systems. Geometry optimizations in dichloromethane, methanol, water, and formamide under normal thermodynamic conditions were performed using the average solvent electrostatic configuration-free energy gradient method, which employs a discrete solvent model. The conformational structure of molecules is moderately affected by the environment, with the π-conjugated system becoming more planar in protic solvents.

View Article and Find Full Text PDF

We present a theoretical study on the structural and electronic properties of the p-dimethylamino-cinnamaldehyde (DMACA) merocyanine molecule in solvents of different polarities by combining the free energy gradient and the average solvent electrostatic configuration methods via an iterative procedure based on the sequential quantum mechanics/molecular mechanics hybrid methodology. Studying such a system in solution is a crucial step for understanding the solvent effects on its properties, which can have implications in fields such as optoelectronics and biophysics. We found that the DMACA molecule presents different geometries in nonpolar and polar solvents, changing from a polyene-like structure with a pyramidal dimethylamino group (in gas phase or nonpolar solvents) to a cyanine-like structure with a planar dimethylamino group in water due to the stabilizing effect of hydrogen bonds between DMACA and water.

View Article and Find Full Text PDF

This work describes in detail the reaction path of the well-known S2 reaction CHBr + Cl → CHCl + Br, whose reaction rate has a huge variation with the solvent in the gas phase and in protic and aprotic liquid environments. We employed the ASEC-FEG method to optimize for minima (reactants and products) and saddle points (transition states) in the in-solution free-energy hypersurface. The method takes atomistic details of the solvent into account.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the electronic hyperpolarizability (β) of phenol blue in various solvents using density functional theory (DFT) and compares results with Møller-Plesset second-order perturbation theory (MP2) for accuracy.
  • It employs a method that considers solvent effects while optimizing the molecule's geometry, revealing that the LC-BLYP functional is particularly effective in predicting β values as bond length alternation (BLA) changes.
  • The findings highlight that the difference in dipole moments between ground and excited states significantly influences β, especially in aqueous solutions, demonstrating a strong relationship between hyperpolarizability and BLA.
View Article and Find Full Text PDF

The structure and electronic properties of the lithium decahydroborate (Li@BH) complex in chloroform and water in normal thermodynamic conditions have been investigated using sequential QM/MM calculations by means of the average solvent electrostatic configuration (ASEC) and the Free Energy Gradient (FEG) methods. To obtain the structure of the Li@BH complex in each of the solvents considered, we have performed geometry optimizations in solution using the ASEC-FEG method. The results show, for the first time with a realistic model of the molecular environment, that this alkali-metal-borane cluster is stable in chloroform but unstable in water.

View Article and Find Full Text PDF

At physiological conditions, myriads of biomolecules (e.g., amino acids, peptides, and proteins) exist predominantly in the zwitterionic structural form and their biological functions will result in these conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the first electronic hyperpolarizability of a merocyanine dye across different solvents with varying dielectric constants.
  • Researchers used atomistic simulations to determine the molecular geometry in each solvent, providing a realistic model of the environment.
  • The findings reveal a significant relationship between the first electronic hyperpolarizability (β) and the bond length alternation (BLA), showing that β is maximized at intermediate positive BLA and decreases to zero as BLA approaches zero.
View Article and Find Full Text PDF

The electronic structure of phenol blue (PB) was investigated in several protic and aprotic solvents, in a wide range of dielectric constants, using atomistic simulations. We employed the sequential QM/MM and the free energy gradient methods to optimize the geometry of PB in each solvent at the MP2/aug-cc-pVTZ level. The ASEC mean field is used to include the ensemble average of the solute-solvent interaction into the molecular hamiltonian, both for the geometry optimization and for the calculations of the electronic properties.

View Article and Find Full Text PDF

A theoretical study of magnetic properties of hydrogen peroxide in water has been carried out by means of Monte Carlo simulation and quantum mechanics calculations. The solvent effects were evaluated in supermolecular structures generated by simulations in the NPT ensemble. The solute-solvent structure was analyzed in terms of radial distribution functions, and the solute-solvent hydrogen bonds were identified with geometric and energetic criteria.

View Article and Find Full Text PDF

Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range -4.

View Article and Find Full Text PDF

There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is studied by performing a relaxation of the geometry and electronic distribution using the free energy gradient method.

View Article and Find Full Text PDF

The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal-isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies.

View Article and Find Full Text PDF

The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations.

View Article and Find Full Text PDF

A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value.

View Article and Find Full Text PDF

The entire ultraviolet-visible absorption spectrum of benzophenone in water is studied and compared with the same spectrum in gas phase. Five transitions are considered, and the corresponding solvatochromic shifts are obtained and compared to experiment. Using a sequential procedure of Monte Carlo simulations and quantum mechanical calculations, liquid configurations were generated and an averaged spectrum of the solution was calculated.

View Article and Find Full Text PDF

The sequential Monte Carlo (MC) quantum mechanics (QM) methodology, using time-dependent density-functional theory (TD-DFT), is used to study the solvatochromic shift of the n-pi* transition of trans-acrolein in water. Using structures obtained from the isothermal-isobaric Metropolis MC simulation TD-DFT calculations, within the B3LYP functional, are performed for the absorption spectrum of acrolein in water. In the average acrolein makes one hydrogen bond with water and the hydrogen-bond shell is responsible for 30% of the total solvatochromic shift, considerably less than the shift obtained for the minimum-energy configurations.

View Article and Find Full Text PDF