Surface-enhanced Raman scattering (SERS) provides detailed information about the binding of molecules at interfaces and their interactions with the local environment due to the large enhancement of Raman scattering. This enhancement arises from a combination of the electromagnetic mechanism (EM) and chemical mechanism (CM). While it is commonly accepted that EM gives rise to most of the enhancement, large spectral changes originate from CM.
View Article and Find Full Text PDFStrong light-matter interactions significantly modify the optical properties of molecules in the vicinity of plasmonic metal nanoparticles. Since the dimension of the plasmonic cavity approaches that of the molecules, it is critical to explicitly describe the nanoparticle junctions. In this work, we use the discrete interaction model/quantum mechanical (DIM/QM) method to model the coupling between the plasmonic near-field and molecular excited states.
View Article and Find Full Text PDFThermal motions of enzymes have been invoked to explain the temperature dependence of kinetic isotope effects (KIE) in enzyme-catalyzed hydride transfers. Formate dehydrogenase (FDH) from exhibits a temperature independent KIE that becomes temperature dependent upon mutation of hydrophobic residues in the active site. Ternary complexes of FDH that mimic the transition state structure allow investigation of how these mutations influence active-site dynamics.
View Article and Find Full Text PDFVibrational modes of a single molecule can be visualized by tip-enhanced Raman spectroscopy with atomic resolution. However, the exact vibrations associated with these Raman scattering images are still in debate due to the lack of theoretical interpretation. In this work, we systematically study the Raman scattering images of a single Co(II)-tetraphenylporphyrin molecule.
View Article and Find Full Text PDF