Monitoring neural activity in the central nervous system often utilizes silicon-based microelectromechanical system (MEMS) probes. Despite their effectiveness in monitoring, these probes have a fragility issue, limiting their application across various fields. This study introduces flexible printed circuit board (FPCB) neural probes characterized by robust mechanical and electrical properties.
View Article and Find Full Text PDFNovel two-dimensional semiconductor crystals can exhibit diverse physical properties beyond their inherent semiconducting attributes, making their pursuit paramount. Memristive properties, as exemplars of these attributes, are predominantly manifested in wide-bandgap materials. However, simultaneously harnessing semiconductor properties alongside memristive characteristics to produce memtransistors is challenging.
View Article and Find Full Text PDFAlthough various electrocatalysts have been developed to ameliorate the shuttle effect and sluggish Li-S conversion kinetics, their electrochemical inertness limits the sufficient performance improvement of lithium-sulfur batteries (LSBs). In this work, an electrochemically active MoO/TiN-based heterostructure (MOTN) is designed as an efficient sulfur host that can improve the overall electrochemical properties of LSBs via prominent lithiation behaviors. By accommodating Li ions into MoO nanoplates, the MOTN host can contribute its own capacity.
View Article and Find Full Text PDFFlexible neural probes are attractive emerging technologies for brain recording because they can effectively record signals with minimal risk of brain damage. Reducing the electrode impedance of the probe before recording is a common practice of many researchers. However, studies investigating the impact of low impedance levels on high-quality recordings using flexible neural probes are lacking.
View Article and Find Full Text PDFEarly detection and effective blood glucose control are critical for preventing and managing diabetes-related complications. Conventional glucometers provide point-in-time measurements but are painful and cannot facilitate continuous monitoring. Continuous glucose monitoring systems are comfortable but face challenges in terms of accuracy, cost, and sensor lifespan.
View Article and Find Full Text PDFLayered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes.
View Article and Find Full Text PDFThe diamond-graphite hybrid thin film with low-dimensional nanostructure (e.g., nitrogen-included ultrananocrystalline diamond (N-UNCD) or the alike), has been employed in many impactful breakthrough applications.
View Article and Find Full Text PDFExtracellular electrical stimulation (ES) can provide electrical potential from outside the cell membrane, but it is often ineffective due to interference from external factors such as culture medium resistance and membrane capacitance. To address this, we developed a vertical nanowire electrode array (VNEA) to directly provide intracellular electrical potential and current to cells through nanoelectrodes. Using this approach, the cell membrane resistivity and capacitance could be excluded, allowing effective ES.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
The aggregation and accumulation of amyloid-β (Aβ) peptides is a characteristic pathology for Alzheimer's disease (AD). Although noninvasive therapies involving stimulation by electric field (EF) have been reported, the efficiency of Aβ disaggregation needs to be further improved for this strategy to be used in clinical settings. In this study, we show that an electrode based on a vertical nanowire electrode array (VNEA) is far more superior to a typical flat-type electrode in disaggregating Aβ plaques.
View Article and Find Full Text PDFGallium nitride nanowires (GaN NWs) with triangular cross-section exhibit universal conductance fluctuations (UCF) originating from the quantum interference of electron wave functions in the NWs. The amplitude of UCF is inversely proportional to the applied bias current. The bias dependence of UCF, combined with temperature dependence of the resistance suggests that phase coherent transport dominates over normal transport in GaN NWs.
View Article and Find Full Text PDFDirect reprogramming is an efficient strategy to produce cardiac lineage cells necessary for cardiac tissue engineering and drug testing for cardiac toxicity. However, functional maturation of reprogrammed cardiomyocytes, which is of great importance for their regenerative potential and drug response, still remains challenging. In this study, we propose a novel electrode platform to promote direct cardiac reprogramming and improve the functionality of reprogrammed cardiac cells.
View Article and Find Full Text PDFContinuous recording of intracellular activities in single cells is required for deciphering rare, dynamic and heterogeneous cell responses, which are missed by population or brief single-cell recording. Even if the field of intracellular recording is constantly proceeding, several technical challenges are still remained to conquer this important approach. Here, we demonstrate long-term intracellular recording by combining a vertical nanowire multi electrode array (VNMEA) with optogenetic stimulation to minimally disrupt cell survival and functions during intracellular access and measurement.
View Article and Find Full Text PDFElucidating cellular dynamics at the level of a single neuron and its associated role within neuronal circuits is essential for interpreting the complex nature of the brain. To investigate the operation of neural activity within its network, it is necessary to precisely manipulate the activation of each neuron and verify its propagation path via the synaptic connection. In this study, by exploiting the intrinsic physical and electrical advantages of a nanoelectrode, a vertical nanowire multi electrode array (VNMEA) is developed as a neuronal activation platform presenting the spatially confined effect on the intracellular space of individual cells.
View Article and Find Full Text PDFPhotolithography is the prevalent microfabrication technology. It needs to meet resolution and yield demands at a cost that makes it economically viable. However, conventional far-field photolithography has reached the diffraction limit, which imposes complex optics and short-wavelength beam source to achieve high resolution at the expense of cost efficiency.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
December 2019
ACS Appl Mater Interfaces
November 2019
Since the discovery of graphene, layered transition metal dichalcogenides (TMDs) have been considered promising materials for applications in various fields because of their fascinating structural features and physical properties. Doping in semiconducting TMDs is essential for their practical application. In this regard, two-dimensional (2D) Si materials have emerged as a key component of 2D electronic, optics, sensing, and spintronic devices because of their complementary metal-oxide-semiconductor (CMOS) compatibility, high-quality oxide formation, moderated bandgap, and well-established doping techniques.
View Article and Find Full Text PDFIn-situ high-pressure synchrotron X-ray powder diffraction studies up to 21 GPa of CVD-grown silicon 2D-nanosheets establish that the structural phase transitions depend on size and shape. For sizes between 9.3(7) nm and 15.
View Article and Find Full Text PDFZnO nanoparticles (NPs) of 4-5 nm, widely adopted as an electron transport layer (ETL) in quantum dot light emitting diodes (QD-LEDs), were synthesized using the solution-precipitation process. It is notable that synthesized ZnO NPs are highly degenerate intrinsic semiconductors and their donor concentration can be increased up to N = 6.9 × 10 cm by annealing at 140 °C in air.
View Article and Find Full Text PDFUltrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge.
View Article and Find Full Text PDFMonolayer MoS, among many other transition metal dichalcogenides, holds great promise for future applications in nanoelectronics and optoelectronics due to its ultrathin nature, flexibility, sizable band gap, and unique spin-valley coupled physics. However, careful study of these properties at low temperature has been hindered by an inability to achieve low-temperature Ohmic contacts to monolayer MoS, particularly at low carrier densities. In this work, we report a new contact scheme that utilizes cobalt (Co) with a monolayer of hexagonal boron nitride (h-BN) that has the following two functions: modifies the work function of Co and acts as a tunneling barrier.
View Article and Find Full Text PDFIn this paper, the T-bridge method is extended to measure the thermal properties of two-dimensional nanomaterials. We present an analysis of the measureable positions, width, and thermal resistance of two-dimensional materials. For verification purposes, the thermal conductivity of a SiO nanoribbon was measured.
View Article and Find Full Text PDFSemiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%.
View Article and Find Full Text PDFSilicon (Si) has a large theoretical capacity of 4200 mAhg and has great potential as a high-performance anode material for Li ion batteries (LIBs). Meanwhile, nanostructures can exploit the potential of Si and, accordingly, many zero-dimensional (0D) and one-dimensional (1D) Si nanostructures have been studied. Herein, we report on two-dimensional (2D) Si nanostructures, Si nanosheets (SiNSs), as anodes for LIBs.
View Article and Find Full Text PDF