Publications by authors named "Hensold J"

For individuals living in rural areas, access to cancer care can be difficult. Barriers to access cross international boundaries and have a negative impact on treatment outcomes. Current models to increase rural access in the United States are reviewed, as is a system-wide approach to this problem in Australia.

View Article and Find Full Text PDF

Background: Geriatric assessment (GA) is recommended for evaluating fitness of an older adult with cancer. Our objective was to prospectively evaluate the gaps that exist in the assessment of older adults with metastatic breast cancer (OA-MBC) in community practices (CP).

Methods: Self-administered GA was compared to provider's assessment (PA) of patients living with MBC aged ≥65 years treated in CP Providers were blinded to the GA results until PA was completed.

View Article and Find Full Text PDF

Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular-derived or angiocrine cues offer an important alternative signaling axis for biomaterial-based stem cell platforms. Elucidating dose-dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures.

View Article and Find Full Text PDF
Article Synopsis
  • - ASCO evaluated changes in care delivery, research, and regulation due to the COVID-19 pandemic and provided recommendations for future improvements as the situation stabilizes.
  • - Their recommendations for clinical research target five goals to enhance accessibility, efficiency, and safety, including reducing administrative burdens and supporting a trained workforce.
  • - For cancer care delivery, ASCO emphasized five goals focused on ensuring equitable access, supporting patient care resources, and expanding telemedicine options to improve overall cancer care quality.
View Article and Find Full Text PDF

Much of the current understanding of the sequential steps involved in translation initiation has been obtained using sucrose gradients to isolate ribosomes and ribosomal subunits, as described here. These purified components are combined with purified translation factors to analyze the formation of intermediates in translation initiation and the roles of the translation factors in vitro.

View Article and Find Full Text PDF

Eukaryotic initiation factor 2A (eIF2A) has been shown to direct binding of the initiator methionyl-tRNA (Met-tRNA(i)) to 40 S ribosomal subunits in a codon-dependent manner, in contrast to eIF2, which requires GTP but not the AUG codon to bind initiator tRNA to 40 S subunits. We show here that yeast eIF2A genetically interacts with initiation factor eIF4E, suggesting that both proteins function in the same pathway. The double eIF2A/eIF4E-ts mutant strain displays a severe slow growth phenotype, which correlated with the accumulation of 85% of the double mutant cells arrested at the G(2)/M border.

View Article and Find Full Text PDF

Marked increased expression of cyclooxygenase 2 (COX-2), a prostaglandin-synthesizing enzyme that is pharmacologically inhibited by nonsteroid anti-inflammatory-type drugs, is a major early oncogenic event in the genesis of human colon neoplasia. We report that, in addition to inducing expression of COX-2, colon cancers further target the prostaglandin biogenesis pathway by ubiquitously abrogating expression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme that physiologically antagonizes COX-2. We find that 15-PGDH transcript and protein are both highly expressed by normal colonic epithelia but are nearly undetectable in colon cancers.

View Article and Find Full Text PDF

Activation of a temperature-sensitive form of p53 in murine erythroleukaemia cells results in a rapid impairment of protein synthesis that precedes inhibition of cell proliferation and loss of cell viability by several hours. The inhibition of translation is associated with specific cleavages of polypeptide chain initiation factors eIF4GI and eIF4B, a phenomenon previously observed in cells induced to undergo apoptosis in response to other stimuli. Although caspase activity is enhanced in the cells in which p53 is activated, both the effects on translation and the cleavages of the initiation factors are completely resistant to inhibition of caspase activity.

View Article and Find Full Text PDF

14-3-3 proteins bind to phosphorylated proteins and regulate a variety of cellular activities as effectors of serine/threonine phosphorylation. To define processes requiring 14-3-3 function in yeast, mutants with increased sensitivity to reduced 14-3-3 protein levels were identified by synthetic lethal screening. One mutation was found to be allelic to YPK1, which encodes a Ser/Thr protein kinase.

View Article and Find Full Text PDF

p53 is an important regulator of cell cycle progression and apoptosis, and inactivation of p53 is associated with tumorigenesis. Although p53 exerts many of its effects through regulation of transcription, this protein is also found in association with ribosomes and several mRNAs have been identified that are translationally controlled in a p53-dependent manner. We have utilized murine erythroleukemic cells that express a temperature-sensitive p53 protein to determine whether p53 also functions at the level of translation.

View Article and Find Full Text PDF

To begin the physical characterization of eukaryotic initiation factor (eIF) 2A, a translation initiation factor that binds Met-tRNA(i), tryptic peptides from rabbit reticulocyte eIF2A were analyzed to obtain amino acid sequence information. Sequences for 8 peptides were matched to three different expressed sequence tag clones. The sequence predicted for eIF2A is 585 amino acids.

View Article and Find Full Text PDF

Synthesis of new ribosomes is an energy costly and thus highly regulated process. Ribosomal protein synthesis is controlled by regulating translation of the corresponding ribosomal protein (rp)mRNAs. In mammalian cells a 5'-terminal oligopyrimidine tract (TOP) is a conserved feature of these mRNAs that has been demonstrated to be essential for their translational regulation.

View Article and Find Full Text PDF

Adaptation to amino acid deficiency is critical for cell survival. In yeast, this adaptation involves phosphorylation of the translation eukaryotic initiation factor (eIF) 2alpha by the kinase GCN2. This leads to the increased translation of the transcription factor GCN4, which in turn increases transcription of amino acid biosynthetic genes, at a time when expression of most genes decreases.

View Article and Find Full Text PDF

Translational regulation plays an important role in development. In terminally differentiating cells a decrease in translation rate is common, although the regulatory mechanisms are unknown. We utilized 32Dcl3 myeloblast cells to investigate translational regulation during granulocyte colony-stimulating factor (G-CSF)-induced differentiation.

View Article and Find Full Text PDF

Bms1p and Tsr1p define a novel family of proteins required for synthesis of 40S ribosomal subunits in Saccharomyces cerevisiae. Both are essential and localize to the nucleolus. Tsr1p shares two extended regions of similarity with Bms1p, but the two proteins function at different steps in 40S ribosome maturation.

View Article and Find Full Text PDF

The 70-kDa heat shock proteins are molecular chaperones that participate in a variety of cellular functions. This chaperone function is stimulated by interaction with hsp40 proteins. The Saccharomyces cerevisiae gene encoding the essential hsp40 homologue, SIS1, appears to function in translation initiation.

View Article and Find Full Text PDF

A cDNA encoding human eukaryotic initiation factor (eIF) 4H was subcloned into a bacterial expression plasmid for purification of recombinant protein. Recombinant human eIF4H (heIF4H) was purified to greater than 95% homogeneity and shown to have similar physical characteristics to eIF4H purified from rabbit reticulocyte lysate as described previously. Functional studies have revealed that recombinant heIF4H functions identically to rabbit eIF4H in stimulating protein synthesis, and the ATP hydrolysis and helicase activities of eIF4A.

View Article and Find Full Text PDF

A new protein with translational activity has been identified on the basis of its ability to stimulate translation in an in vitro globin synthesis assay deficient in eukaryotic initiation factor (eIF) 4B and eIF4F. This protein has been purified to greater than 80% homogeneity from rabbit reticulocyte lysate and has been given the name eIF4H. eIF4H was shown to stimulate the in vitro activities of eIF4B and eIF4F in globin synthesis, as well as the in vitro RNA-dependent ATPase activities of eIF4A, eIF4B, and eIF4F.

View Article and Find Full Text PDF

The transcription factor Spi-1 (PU.1) has a central role in regulating myeloid gene expression during hematopoietic development and its overexpression has been implicated in erythroleukemic transformation. Thus regulation of Spi-1 expression has broad significance for hematopoietic development.

View Article and Find Full Text PDF

Translation has an established role in the regulation of cell growth. Posttranslational modification of translation initiation and elongation factors or regulation of mRNA polyadenylation represent common means of regulating translation in response to mitogenic or developmental signals. Induced differentiation of Friend virus-transformed erythroleukemia cells is accompanied by a rapid decrease in the translation rate of these cells.

View Article and Find Full Text PDF

Friend virus-transformed murine erythroleukemia (MEL) cells are a useful system for studying the regulation of erythroid growth and differentiation. As a manifestation of the leukemic process, these erythroblasts are blocked in their ability to terminally differentiate. However, this block is reversible as a variety of different agents are capable of inducing differentiation of these malignant erythroblasts.

View Article and Find Full Text PDF

Increased expression of the transcription factor Spi-1 (PU.1) results from retroviral insertion in nearly all Friend spleen focus-forming virus-transformed murine erythroleukemia cell lines and exposure of these cells to Me2SO, induces their differentiation and decreases Spi-1 mRNA level by 4-5-fold. While these results suggest that alterations in Spi-1 expression have significant effects on erythroblast growth and differentiation, neither the cause nor the effect of the decrease in Spi-1 expression that follows Me2SO exposure has been established.

View Article and Find Full Text PDF

The hematopoietic-specific DNA-binding protein B1 binds to the DNA consensus sequence AAAGRGGAARYG located twice in intervening sequence 2 of both of the mouse beta-globin genes (D. L. Galson and D.

View Article and Find Full Text PDF

To investigate the mechanism of glucocorticoid-induced lymphocytolysis, we used two-dimensional gel electrophoresis to analyze the effect of dexamethasone on the synthesis of individual proteins in S49 mouse lymphoma cells. We found that synthesis of a 78-Kd protein is preferentially maintained following dexamethasone treatment, at a time when the synthesis of most other cellular proteins is decreased. Synthesis of this protein could also be induced by tunicamycin, suggesting that it might be the 78-Kd glucose-regulated protein (GRP78).

View Article and Find Full Text PDF

Murine erythroleukemia (MEL) cells are a useful model for studying the processes that regulate erythroid differentiation because exposure of these cells to a variety of chemical inducing agents results in expression of erythroid-specific genes and the resultant loss of cellular immortality. Previously it has been suggested that the calcium ionophore, A23187, has effects on the early cellular events that lead to the commitment of these cells to differentiation, but was not in itself sufficient to induce differentiation. We demonstrate here that A23187, as well as another calcium ionophore, ionomycin, are capable of inducing commitment to differentiation.

View Article and Find Full Text PDF