Publications by authors named "Hensler M"

Article Synopsis
  • Hormone receptor-positive breast cancer shows limited response to immune checkpoint inhibitors (ICIs), but radiation therapy (RT) might enhance the effectiveness of ICIs by boosting immune responses.
  • The study explored the combination of hypofractionated RT with ICIs in a mouse model to see if targeting the primary tumor could delay the emergence of new tumors.
  • Results revealed that while focal RT could control primary tumor growth effectively, adding ICIs did not significantly improve overall survival, suggesting that controlling the primary tumor does not necessarily prevent the development of new cancer lesions.
View Article and Find Full Text PDF

Purpose: Patients with high-grade serous ovarian carcinoma (HGSOC) are virtually insensitive to immune checkpoint inhibitors (ICI) employed as standalone therapeutics, at least in part reflecting microenvironmental immunosuppression. Thus, conventional chemotherapeutics and targeted anticancer agents that not only mediate cytotoxic effects but also promote the recruitment of immune effector cells to the HGSOC microenvironment stand out as promising combinatorial partners for ICIs in this oncological indication.

Experimental Design: We harnessed a variety of transcriptomic, spatial, and functional assays to characterize the differential impact of neoadjuvant paclitaxel-carboplatin on the immunological configuration of paired primary and metastatic HGSOC biopsies as compared to neoadjuvant chemotherapy (NACT)-naïve HGSOC samples from five independent patient cohorts.

View Article and Find Full Text PDF

Intratumoral tertiary lymphoid structures (TLSs) have been associated with improved outcome in various cohorts of patients with cancer, reflecting their contribution to the development of tumor-targeting immunity. Here, we demonstrate that high-grade serous ovarian carcinoma (HGSOC) contains distinct immune aggregates with varying degrees of organization and maturation. Specifically, mature TLSs (mTLS) as forming only in 16% of HGSOCs with relatively elevated tumor mutational burden (TMB) are associated with an increased intratumoral density of CD8 effector T (T) cells and TIM3PD1, hence poorly immune checkpoint inhibitor (ICI)-sensitive, CD8 T cells.

View Article and Find Full Text PDF

The profile of the antitumor immune response is an important factor determining patient clinical outcome. However, the influence of the tissue contexture on the composition of the tumor microenvironments of virally induced tumors is not clearly understood. Therefore, we analyzed the immune landscape of two HPV-associated malignancies: oropharyngeal squamous cell carcinoma (OPSCC) and squamous cell carcinoma of uterine cervix (CESC).

View Article and Find Full Text PDF

While type I interferon (IFN) is best known for its key role against viral infection, accumulating preclinical and clinical data indicate that robust type I IFN production in the tumor microenvironment promotes cancer immunosurveillance and contributes to the efficacy of various antineoplastic agents, notably immunogenic cell death inducers. Here, we report that malignant blasts from patients with acute myeloid leukemia (AML) release type I IFN via a Toll-like receptor 3 (TLR3)-dependent mechanism that is not driven by treatment. While in these patients the ability of type I IFN to stimulate anticancer immune responses was abolished by immunosuppressive mechanisms elicited by malignant blasts, type I IFN turned out to exert direct cytostatic, cytotoxic and chemosensitizing activity in primary AML blasts, leukemic stem cells from AML patients and AML xenograft models.

View Article and Find Full Text PDF

Dendritic cells (DCs) have received considerable attention as potential targets for the development of novel cancer immunotherapies. However, the clinical efficacy of DC-based vaccines remains suboptimal, largely reflecting local and systemic immunosuppression at baseline. An autologous DC-based vaccine (DCVAC) has recently been shown to improve progression-free survival and overall survival in randomized clinical trials enrolling patients with lung cancer (SLU01, NCT02470468) or ovarian carcinoma (SOV01, NCT02107937), but not metastatic castration-resistant prostate cancer (SP005, NCT02111577), despite a good safety profile across all cohorts.

View Article and Find Full Text PDF

Purpose: The successful implementation of immune checkpoint inhibitors (ICI) in the clinical management of various solid tumors has raised considerable expectations for patients with epithelial ovarian carcinoma (EOC). However, EOC is poorly responsive to ICIs due to immunologic features including limited tumor mutational burden (TMB) and poor lymphocytic infiltration. An autologous dendritic cell (DC)-based vaccine (DCVAC) has recently been shown to be safe and to significantly improve progression-free survival (PFS) in a randomized phase II clinical trial enrolling patients with EOC (SOV01, NCT02107937).

View Article and Find Full Text PDF

LTX-315 is a nonameric oncolytic peptide in early clinical development for the treatment of solid malignancies. Preclinical and clinical evidence indicates that the anticancer properties of LTX-315 originate not only from its ability to selectively kill cancer cells, but also from its capacity to promote tumor-targeting immune responses. Here, we investigated the therapeutic activity and immunological correlates of intratumoral LTX-315 administration in three syngeneic mouse models of breast carcinoma, with a focus on the identification of possible combinatorial partners.

View Article and Find Full Text PDF

Accumulating evidence indicates that immune checkpoint inhibitors (ICIs) can restore CD8 cytotoxic T lymphocyte (CTL) functions in preclinical models of acute myeloid leukemia (AML). However, ICIs targeting programmed cell death 1 (PDCD1, best known as PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) have limited clinical efficacy in patients with AML. Natural killer (NK) cells are central players in AML-targeting immune responses.

View Article and Find Full Text PDF
Article Synopsis
  • Long-chain n-3 polyunsaturated fatty acids (Omega-3) and thiazolidinediones (TZDs) work together to combat dietary obesity and related metabolic issues in mice.
  • In experiments with mice on a high-fat diet, the combination of Omega-3 and TZDs helped restore the fatty acid cycling process in white adipose tissue (WAT), which was negatively impacted by the diet.
  • The study highlights that while both TZDs and Omega-3 have additive effects on metabolism, they influence gene expression and metabolic pathways in different ways.
View Article and Find Full Text PDF

Antibodies targeting the co-inhibitory receptor programmed cell death 1 (PDCD1, best known as PD-1) or its main ligand CD274 (best known as PD-L1) have shown some activity in patients with metastatic triple-negative breast cancer (TNBC), especially in a recent Phase III clinical trial combining PD-L1 blockade with taxane-based chemotherapy. Despite these encouraging findings, however, most patients with TNBC fail to derive significant benefits from PD-L1 blockade, calling for the identification of novel therapeutic approaches. Here, we used the 4T1 murine mammary cancer model of metastatic and immune-resistant TNBC to test whether focal radiation therapy (RT), a powerful inducer of immunogenic cell death, in combination with various immunotherapeutic strategies can overcome resistance to immune checkpoint blockade.

View Article and Find Full Text PDF

Skin closure following abdominal wall reconstruction (AWR) has received little attention, even though these patients have demonstrated insufficient wound healing. This study assessed the postoperative wound-related complications and patient-reported outcomes after skin closure using single- or triple layer closure following AWR. This was a retrospective study at a University Hospital from 2016 to 2018.

View Article and Find Full Text PDF

Background: The immunological microenvironment of primary high-grade serous carcinomas (HGSCs) has a major impact on disease outcome. Conversely, little is known on the microenvironment of metastatic HGSCs and its potential influence on patient survival. Here, we explore the clinical relevance of the immunological configuration of HGSC metastases.

View Article and Find Full Text PDF

Hormone receptor (HR) breast cancer (BC) causes most BC-related deaths, calling for improved therapeutic approaches. Despite expectations, immune checkpoint blockers (ICBs) are poorly active in patients with HR BC, in part reflecting the lack of preclinical models that recapitulate disease progression in immunocompetent hosts. We demonstrate that mammary tumors driven by medroxyprogesterone acetate (M) and 7,12-dimethylbenz[a]anthracene (D) recapitulate several key features of human luminal B HRHER2 BC, including limited immune infiltration and poor sensitivity to ICBs.

View Article and Find Full Text PDF

Background: Although preoperative administration of high-dose glucocorticoid may lead to improved recovery after operative procedures, this regimen has not been examined in patients undergoing abdominal wall reconstruction for repair of large ventral hernias. The aim of the current trial was to examine the effects of preoperative, single high-dose glucocorticoid on recovery after abdominal wall reconstruction.

Method: Forty patients undergoing abdominal wall reconstruction for repair of ventral incisional hernias with a horizontal fascial defect >10 cm were randomized to intravenous administration of either 125 mg methylprednisolone or placebo at the induction of anesthesia.

View Article and Find Full Text PDF

Background: Adjuvanticity, which is the ability of neoplastic cells to deliver danger signals, is critical for the host immune system to mount spontaneous and therapy-driven anticancer immune responses. One of such signals, i.e.

View Article and Find Full Text PDF

Caspase 3 (CASP3) has a key role in the execution of apoptosis, and many cancer cells are believed to disable CASP3 as a mechanism of resistance to cytotoxic therapeutics. Alongside, CASP3 regulates stress-responsive immunomodulatory pathways, including secretion of type I interferon (IFN). Here, we report that mouse mammary carcinoma TSA cells lacking or subjected to chemical caspase inhibition were as sensitive to the cytostatic and cytotoxic effects of radiation therapy (RT) as their control counterparts, yet secreted increased levels of type I IFN.

View Article and Find Full Text PDF

In some settings, cancer cells responding to treatment undergo an immunogenic form of cell death that is associated with the abundant emission of danger signals in the form of damage-associated molecular patterns. Accumulating preclinical and clinical evidence indicates that danger signals play a crucial role in the (re-)activation of antitumor immune responses , thus having a major impact on patient prognosis. We have previously demonstrated that the presence of calreticulin on the surface of malignant blasts is a positive prognostic biomarker for patients with acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Purpose: In multiple oncological settings, expression of the coinhibitory ligand PD-L1 by malignant cells and tumor infiltration by immune cells expressing coinhibitory receptors such as PD-1, CTLA4, LAG-3, or TIM-3 conveys prognostic or predictive information. Conversely, the impact of these features of the tumor microenvironment on disease outcome among high-grade serous carcinoma (HGSC) patients remains controversial.

Experimental Design: We harnessed a retrospective cohort of 80 chemotherapy-naïve HGSC patients to investigate PD-L1 expression and tumor infiltration by CD8 T cells, CD20 B cells, DC-LAMP dendritic cells as well as by PD-1, CTLA4, LAG-3, and TIM-3 cells in relation with prognosis and function orientation of the tumor microenvironment.

View Article and Find Full Text PDF

A high density of tumor-infiltrating CD8 T cells and CD20 B cells correlates with prolonged survival in patients with a wide variety of human cancers, including high-grade serous ovarian carcinoma (HGSC). However, the potential impact of mature dendritic cells (DCs) in shaping the immune contexture of HGSC, their role in the establishment of T cell-dependent antitumor immunity, and their potential prognostic value for HGSC patients remain unclear. We harnessed immunohistochemical tests and biomolecular analyses to demonstrate that a high density of tumor-infiltrating DC-LAMP DCs is robustly associated with an immune contexture characterized by T1 polarization and cytotoxic activity.

View Article and Find Full Text PDF

Reduced nitrogen species are key nutrients for biological productivity in the oceans. Ammonium is often present in low and growth-limiting concentrations, albeit peaks occur during collapse of algal blooms or via input from deep sea upwelling and riverine inflow. Autotrophic phytoplankton exploit ammonium peaks by storing nitrogen intracellularly.

View Article and Find Full Text PDF

The cyanobacterial marine natural product honaucin A inhibits mammalian innate inflammation in vitro and in vivo. To decipher its mechanism of action, RNA sequencing was used to evaluate differences in gene expression of cultured macrophages following honaucin A treatment. This analysis led to the hypothesis that honaucin A exerts its anti-inflammatory activity through activation of the cytoprotective nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile response element (ARE/EpRE) signaling pathway.

View Article and Find Full Text PDF

Objective: Immunotherapy of cancer has the potential to be effective mostly in patients with a low tumour burden. Rising PSA (prostate-specific antigen) levels in patients with prostate cancer represents such a situation. We performed the present clinical study with dendritic cell (DC)-based immunotherapy in this patient population.

View Article and Find Full Text PDF