Background: In genomic prediction, it is common to centre the genotypes of single nucleotide polymorphisms based on the allele frequencies in the current population, rather than those in the base generation. The mean breeding value of non-genotyped animals is conditional on the mean performance of genotyped relatives, but can be corrected by fitting the mean performance of genotyped individuals as a fixed regression. The associated covariate vector has been referred to as a 'J-factor', which if fitted as a fixed effect can improve the accuracy and dispersion bias of sire genomic estimated breeding values (GEBV).
View Article and Find Full Text PDFBackground: In broiler breeding, genotype-by-environment interaction is known to result in a genetic correlation between body weight measured in bio-secure and commercial environments that is substantially less than 1. Thus, measuring body weights on sibs of selection candidates in a commercial environment and genotyping them could increase genetic progress. Using real data, the aim of this study was to evaluate which genotyping strategy and which proportion of sibs placed in the commercial environment should be genotyped to optimize a sib-testing breeding program in broilers.
View Article and Find Full Text PDFHuman 3D liver microtissues/spheroids are powerful models to study drug-induced liver injury (DILI) but the small number of cells per spheroid limits the models' usefulness to study drug metabolism. In this work, we scale up the number of spheroids on both a plate and a standardized organ-chip platform by factor 100 using a basic method which requires only limited technical expertise. We successfully generated up to 100 spheroids using polymer-coated microwells in a 96-well plate (= liver-plate) or organ-chip (= liver-chip).
View Article and Find Full Text PDFAneuploidy is the loss or gain of one or more chromosomes. Although it is a rare phenomenon in liveborn individuals, it is observed in livestock breeding populations. These breeding populations are often routinely genotyped and the genotype intensity data from single nucleotide polymorphism (SNP) arrays can be exploited to identify aneuploidy cases.
View Article and Find Full Text PDFBackground: In genomic prediction including data of 3- or 4-way crossbred animals, line composition is usually fitted as a regression on expected line proportions, which are 0.5, 0.25 and 0.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2021
Background: The traditional way to estimate variance components (VC) is based on the animal model using a pedigree-based relationship matrix (A) (A-AM). After genomic selection was introduced into breeding programs, it was anticipated that VC estimates from A-AM would be biased because the effect of selection based on genomic information is not captured. The single-step method (H-AM), which uses an H matrix as (co)variance matrix, can be used as an alternative to estimate VC.
View Article and Find Full Text PDFThe existence of buffering mechanisms is an emerging property of biological networks, and this results in the buildup of robustness through evolution. So far, there are no explicit methods to find loci implied in buffering mechanisms. However, buffering can be seen as interaction with genetic background.
View Article and Find Full Text PDFAfter publication of this work [1], we noticed that there was an error: the formula to calculate the standard error of the estimated correlation.
View Article and Find Full Text PDFFollowing publication of original article [1], we noticed that there was an error: Eq. (3) on page 5 is the genomic relationship matrix that.
View Article and Find Full Text PDFA multivariate model was developed and used to estimate genetic parameters of body weight (BW) at 1-6 weeks of age of broilers raised in a commercial environment. The development of model was based on the predictive ability of breeding values evaluated from a cross-validation procedure that relied on half-sib correlation. The multivariate model accounted for heterogeneous variances between sexes through standardization applied to male and female BWs differently.
View Article and Find Full Text PDFBackground: The objectives of this study were to (1) simultaneously estimate genetic parameters for BW, feed intake (FI), and body weight gain (Gain) during a FI test in broiler chickens using multi-trait Bayesian analysis; (2) derive phenotypic and genetic residual feed intake (RFI) and estimate genetic parameters of the resulting traits; and (3) compute a Bayesian measure of direct and correlated superiority of a group selected on phenotypic or genetic residual feed intake. A total of 56,649 male and female broiler chickens were measured at one of two ages ([Formula: see text] or [Formula: see text] days). BW, FI, and Gain of males and females at the two ages were considered as separate traits, resulting in a 12-trait model.
View Article and Find Full Text PDFBackground: The increase in accuracy of prediction by using genomic information has been well-documented. However, benefits of the use of genomic information and methodology for genetic evaluations are missing when genotype-by-environment interactions (G × E) exist between bio-secure breeding (B) environments and commercial production (C) environments. In this study, we explored (1) G × E interactions for broiler body weight (BW) at weeks 5 and 6, and (2) the benefits of using genomic information for prediction of BW traits when selection candidates were raised and tested in a B environment and close relatives were tested in a C environment.
View Article and Find Full Text PDFBroiler breeding programs rely on crossbreeding. With genomic selection, widespread use of crossbred performance in breeding programs comes within reach. Commercial crossbreds, however, may have unknown pedigrees and their genomes may include DNA from 2 to 4 different breeds.
View Article and Find Full Text PDFBackground: Pig and poultry breeding programs aim at improving crossbred (CB) performance. Selection response may be suboptimal if only purebred (PB) performance is used to compute genomic estimated breeding values (GEBV) because the genetic correlation between PB and CB performance ([Formula: see text]) is often lower than 1. Thus, it may be beneficial to use information on both PB and CB performance.
View Article and Find Full Text PDFBackground: In pig and poultry breeding programs, the breeding goal is to improve crossbred (CB) performance, whereas selection in the purebred (PB) lines is often based on PB performance. Thus, response to selection may be suboptimal, because the genetic correlation between PB and CB performance ([Formula: see text]) is generally lower than 1. Accurate estimates of the [Formula: see text] are needed, so that breeders can decide if they should collect data from CB animals.
View Article and Find Full Text PDFBackground: A breeding program for commercial broiler chicken that is carried out under strict biosecure conditions can show reduced genetic gain due to genotype by environment interactions (G × E) between bio-secure (B) and commercial production (C) environments. Accuracy of phenotype-based best linear unbiased prediction of breeding values of selection candidates using sib-testing in C is low. Genomic prediction based on dense genetic markers may improve accuracy of selection.
View Article and Find Full Text PDFThe primary target of a novel series of immunosuppressive 7-piperazin-1-ylthiazolo[5,4- d]pyrimidin-5-amines was identified as the lipid kinase, PI4KIIIβ. Evaluation of the series highlighted their poor solubility and unwanted off-target activities. A medicinal chemistry strategy was put in place to optimize physicochemical properties within the series, while maintaining potency and improving selectivity over other lipid kinases.
View Article and Find Full Text PDFBackground: DNA-based predictions for hard-to-measure production traits hold great promise for selective breeding programs. DNA pooling might provide a cheap genomic approach to use phenotype data from commercial flocks which are commonly group-mated with parentage unknown. This study on sheep explores if genomic breeding values for stud sires can be estimated from genomic relationships that were obtained from pooled DNA in combination with phenotypes from commercial progeny.
View Article and Find Full Text PDFWe introduce an innovative approach to lowering the overall cost of obtaining genomic EBV (GEBV) and encourage their use in commercial extensive herds of Brahman beef cattle. In our approach, the DNA genotyping of cow herds from 2 independent properties was performed using a high-density bovine SNP chip on DNA from pooled blood samples, grouped according to the result of a pregnancy test following their first and second joining opportunities. For the DNA pooling strategy, 15 to 28 blood samples from the same phenotype and contemporary group were allocated to pools.
View Article and Find Full Text PDFGenet Sel Evol
September 2016
Background: As genomic data becomes more abundant, genomic prediction is more routinely used to estimate breeding values. In genomic prediction, the relationship matrix ([Formula: see text]), which is traditionally used in genetic evaluations is replaced by the genomic relationship matrix ([Formula: see text]). This paper considers alternative ways of building relationship matrices either using single markers or haplotypes of different lengths.
View Article and Find Full Text PDFGenome-wide association mapping and genomic predictions of phenotype of individuals in livestock are predominately based on the detection and estimation of additive genetic effects. Non-additive genetic effects are largely ignored. Studies in animals, plants, and humans to assess the impact of non-additive genetic effects in genetic analyses have led to differing conclusions.
View Article and Find Full Text PDFBackground: The success of genomic selection in animal breeding hinges on the availability of a large reference population on which genomic-based predictions of additive genetic or breeding values are built. Here, we explore the benefit of combining two unrelated populations into a single reference population.
Methods: The datasets consisted of 1829 Brahman and 1973 Tropical Composite cattle with measurements on five phenotypes relevant to tropical adaptation and genotypes for 71,726 genome-wide single nucleotide polymorphisms (SNPs).
Background: Despite ongoing reduction in genotyping costs, genomic studies involving large numbers of species with low economic value (such as Black Tiger prawns) remain cost prohibitive. In this scenario DNA pooling is an attractive option to reduce genotyping costs. However, genotyping of pooled samples comprising DNA from many individuals is challenging due to the presence of errors that exceed the allele frequency quantisation size and therefore cannot be simply corrected by clustering techniques.
View Article and Find Full Text PDF