Publications by authors named "Hensel N"

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by low levels of the Survival of Motoneuron (SMN) protein. SMN interacts with and regulates the actin-binding protein profilin2a, thereby influencing actin dynamics. Dysfunctional actin dynamics caused by SMN loss disrupts neurite outgrowth, axonal pathfinding, and formation of functional synapses in neurons.

View Article and Find Full Text PDF
Article Synopsis
  • * The study used advanced techniques such as proteomics and interactomics on mouse models with varying disease severities to identify networks of proteins and their interactions that illuminate both similarities and differences in SMA presentation.
  • * By integrating data on the SMN protein with these molecular networks, researchers were able to pinpoint critical connections and disruptions that contribute to SMA, offering a new way to analyze monogenic diseases through a systematic approach.
View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is caused by low levels of the survival of motoneuron (SMN) Protein leading to preferential degeneration of lower motoneurons in the ventral horn of the spinal cord and brain stem. However, the SMN protein is ubiquitously expressed and there is growing evidence of a multisystem phenotype in SMA. Since a loss of SMN function is critical, it is important to decipher the regulatory mechanisms of SMN function starting on the level of the SMN protein itself.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a monogenic neuromuscular disease caused by low levels of the Survival Motor Neuron (SMN) protein. Motor neuron degeneration is the central hallmark of the disease. However, the SMN protein is ubiquitously expressed and depletion of the protein in peripheral tissues results in intrinsic disease manifestations, including muscle defects, independent of neurodegeneration.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the SMN1 gene and low SMN protein levels. Although lower motor neurons are a primary target, there is evidence that peripheral organ defects contribute to SMA. Current SMA gene therapy and clinical trials use a single intravenous bolus of the blood-brain-barrier penetrant scAAV9-cba-SMN by either systemic or central nervous system (CNS) delivery, resulting in impressive amelioration of the clinical phenotype but not a complete cure.

View Article and Find Full Text PDF

Genetic variants of the interferon lambda (IFNL) gene locus are strongly associated with spontaneous and IFN treatment-induced clearance of hepatitis C virus (HCV) infections. Individuals with the ancestral IFNL4-dG allele are not able to clear HCV in the acute phase and have more than a 90% probability to develop chronic hepatitis C (CHC). Paradoxically, the IFNL4-dG allele encodes a fully functional IFNλ4 protein with antiviral activity against HCV.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the ( and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed.

View Article and Find Full Text PDF

Chronic hepatitis C virus (cHCV) infection is a major global health burden and the leading cause of hepatocellular carcinoma (HCC) in the Western world. The course and outcome of HCV infection is centrally influenced by CD8 T cell responses. Indeed, strong virus-specific CD8 T cell responses are associated with spontaneous viral clearance while failure of these responses, e.

View Article and Find Full Text PDF

The novel coronavirus 2019 (COVID-19) pandemic has placed an unprecedented strain on healthcare systems and frontline workers worldwide. The large influx of these high acuity patients has placed pressure on services to modify their operations to meet this increased need. We describe how the Vascular Access Service (VAS) at a New York City academic hospital adopted a team-based approach to efficiently meet increased demand for vascular access devices, while ensuring safety and conserving personal protective equipment.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a devastating childhood disease primarily affecting lower motoneurons in the spinal cord. SMA is caused by the loss of functional survival of motoneuron (SMN) protein, leading to structural and functional alterations of the cytoskeleton in motoneurons and other cells. Loss of SMN results in impairments of microtubule architecture, but the underlying mechanisms are not completely understood.

View Article and Find Full Text PDF

In chronic hepatitis C virus (HCV) infection, exhausted HCV-specific CD8 T cells comprise memory-like and terminally exhausted subsets. However, little is known about the molecular profile and fate of these two subsets after the elimination of chronic antigen stimulation by direct-acting antiviral (DAA) therapy. Here, we report a progenitor-progeny relationship between memory-like and terminally exhausted HCV-specific CD8 T cells via an intermediate subset.

View Article and Find Full Text PDF

Objective: Chronic hepatitis B virus (HBV) infection is characterised by HBV-specific CD8+ T cell dysfunction that has been linked to Tcell exhaustion, a distinct differentiation programme associated with persisting antigen recognition. Recently, Thymocyte Selection-Associated High Mobility Group Box (TOX) was identified as master regulator of CD8+ T cell exhaustion. Here, we addressed the role of TOX in HBV-specific CD8+ T cell dysfunction associated with different clinical phases of infection.

View Article and Find Full Text PDF

Infections of the brain with herpes simplex virus type 1 (HSV-1) cause life-threatening Herpes simplex encephalitis (HSE) characterized by viral replication in neurons and neuro-inflammation including an infiltration of peripheral immune cells. HSV-1 reprograms host cells to foster its own replication and for immune evasion, but eventually the immune responses clear the infection in most patients. However, many survivors suffer from long-term neuronal damage and cannot regenerate all brain functions.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a fatal neurodegenerative disease of newborns and children caused by mutations or deletions of the survival of motoneuron gene 1 resulting in low levels of the SMN protein. While neuromuscular degeneration is the cardinal symptom of the disease, the reduction of the ubiquitously expressed SMN additionally elicits non-motoneuron symptoms. Impaired bone development is a key feature of SMA, but it is yet unknown whether this is an indirect functional consequence of muscle weakness or caused by bone-intrinsic mechanisms.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) occurs as a result of cell-ubiquitous depletion of the essential survival motor neuron (SMN) protein. Characteristic disease pathology is driven by a particular vulnerability of the ventral motor neurons of the spinal cord to decreased SMN. Perhaps not surprisingly, many other organ systems are also impacted by SMN depletion.

View Article and Find Full Text PDF

Spinal Muscular Atrophy (SMA) is monogenic motoneuron disease caused by low levels of the Survival of Motoneuron protein (SMN). Recently, two different drugs were approved for the treatment of the disease. The antisense oligonucleotide Nusinersen/Spinraza® and the gene replacement therapy Onasemnogene Abeparvovec/Zolgensma® both enhance SMN levels.

View Article and Find Full Text PDF

Profilin is a major regulator of actin dynamics in multiple specific processes localized in different cellular compartments. This specificity is not only meditated by its binding to actin but also its interaction with phospholipids such as phosphatidylinositol (4,5)-bisphosphate (PIP ) at the membrane and a plethora of proteins containing poly-L-proline (PLP) stretches. These interactions are fine-tuned by posttranslational modifications such as phosphorylation.

View Article and Find Full Text PDF

Background: Herpes simplex virus-1 (HSV-1) infections of the central nervous system (CNS) can result in HSV-1 encephalitis (HSE) which is characterized by severe brain damage and long-term disabilities. Different cell types including neurons and astrocytes become infected in the course of an HSE which leads to an activation of glial cells. Activated glial cells change their neurotrophic factor profile and modulate inflammation and repair.

View Article and Find Full Text PDF

The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by a profound loss of motor neurons (MNs). Until now only riluzole minimally extends life expectancy in ALS, presumably by inhibiting glutamatergic neurotransmission and calcium overload of MNs. Therefore, the aim of this study was to investigate the glutamate receptor properties and key aspects of intracellular calcium dynamics in induced pluripotent stem cell (iPSC)-derived MNs from ALS patients with C9orf72 (n = 4 cell lines), fused in sarcoma (FUS) (n = 9), superoxide dismutase 1 (SOD1) (n = 3) or transactive response DNA-binding protein 43 (TDP43) (n = 3) mutations as well as healthy (n = 7 cell lines) and isogenic controls (n = 3).

View Article and Find Full Text PDF

Nematode-trapping fungi (NTF) are a large and diverse group of fungi, which may switch from a saprotrophic to a predatory lifestyle if nematodes are present. Different fungi have developed different trapping devices, ranging from adhesive cells to constricting rings. After trapping, fungal hyphae penetrate the worm, secrete lytic enzymes and form a hyphal network inside the body.

View Article and Find Full Text PDF

Theiler's murine encephalomyelitis virus (TMEV) infection represents an experimental mouse model to study hippocampal damage induced by neurotropic viruses. IL-10 is a pleiotropic cytokine with profound anti-inflammatory properties, which critically controls immune homeostasis. In order to analyze IL-10R signaling following virus-induced polioencephalitis, SJL mice were intracerebrally infected with TMEV.

View Article and Find Full Text PDF

Cytoskeletal rearrangement during axon growth is mediated by guidance receptors and their ligands which act either as repellent, attractant or both. Regulation of the actin cytoskeleton is disturbed in Spinal Muscular Atrophy (SMA), a devastating neurodegenerative disease affecting mainly motoneurons, but receptor-ligand interactions leading to the dysregulation causing SMA are poorly understood. In this study, we analysed the role of the guidance receptor PlexinD1 in SMA pathogenesis.

View Article and Find Full Text PDF

Spinal Muscular Atrophy (SMA) is a motoneuron disease caused by low levels of functional survival of motoneuron protein (SMN). Molecular disease mechanisms downstream of functional SMN loss are still largely unknown. Previous studies suggested an involvement of Rho kinase (ROCK) as well as the extracellular signal-regulated kinases (ERK) pathways in the pathomechanism.

View Article and Find Full Text PDF