Publications by authors named "Henry W Rohrs"

In Drosophila testis, myosin VI plays a special role, distinct from its motor function, by anchoring components to the unusual actin-based structures (cones) that are required for spermatid individualization. For this, the two calmodulin (CaM) light-chain molecules of myosin VI are replaced by androcam (ACaM), a related protein with 67% identity to CaM. Although ACaM has a similar bi-lobed structure to CaM, with two EF hand-type Ca binding sites per lobe, only one functional Ca binding site operates in the amino-terminus.

View Article and Find Full Text PDF

Nipah virus (NiV) is an emerging and deadly zoonotic paramyxovirus that is responsible for periodic epidemics of acute respiratory illness and encephalitis in humans. Previous studies have shown that the NiV V protein antagonizes host antiviral immunity, but the molecular mechanism is incompletely understood. To address this gap, we biochemically characterized NiV V binding to the host pattern recognition receptor MDA5.

View Article and Find Full Text PDF

Nucleocapsid proteins are essential for SARS-CoV-2 life cycle. Here, we describe protocols to gather domain-specific insights about essential properties of nucleocapsids. These assays include dynamic light scattering to characterize oligomerization, fluorescence polarization to quantify RNA binding, hydrogen-deuterium exchange mass spectrometry to map RNA binding regions, negative-stain electron microscopy to visualize oligomeric species, interferon reporter assay to evaluate interferon signaling modulation, and a serology assay to reveal insights for improved sensitivity and specificity.

View Article and Find Full Text PDF

Nucleocapsid (N) encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays key roles in the replication cycle and is a critical serological marker. Here, we characterize essential biochemical properties of N and describe the utility of these insights in serological studies. We define N domains important for oligomerization and RNA binding and show that N oligomerization provides a high-affinity RNA-binding platform.

View Article and Find Full Text PDF

Nucleocapsid protein (N) is the most abundant viral protein encoded by SARS-CoV-2, the causative agent of COVID-19. N plays key roles at different steps in the replication cycle and is used as a serological marker of infection. Here we characterize the biochemical properties of SARS-CoV-2 N.

View Article and Find Full Text PDF

The spectroscopically observed magic-size nanoclusters (ZnSe) and (CdTe) are isolated as amine derivatives. The nanoclusters [(ZnSe)( n-octylamine)(di- n-octylamine)] and [(CdTe)( n-octylamine)(di- n-pentylamine)] are fully characterized by combustion-based elemental analysis, UV-visible spectroscopy, IR spectroscopy, and mass spectrometry. Amine derivatives of both (ZnSe) and (CdTe) are observed to convert to the corresponding (ZnSe) and (CdTe) derivatives, indicating that the former are kinetic products and the latter thermodynamic products, under the conditions employed.

View Article and Find Full Text PDF
Article Synopsis
  • The reaction between Cd(OAc)·2HO and selenourea in a mix of primary and secondary amines produces crystalline CdSe quantum platelets at room temperature.
  • Their structure and quality are confirmed using techniques like X-ray diffraction and high-resolution transmission electron microscopy, alongside their distinct light absorption and emission properties.
  • The process shows that a specific size of CdSe nanocluster acts as a key intermediate, which then converts into quantum platelets through a first-order reaction, without any delay in the process.
View Article and Find Full Text PDF

Dyneins are minus end directed microtubule motors that play a critical role in ciliary and flagellar movement. Ciliary dyneins, also known as axonemal dyneins, are characterized based on their location on the axoneme, either as outer dynein arms or inner dynein arms. The I1 dynein is the best-characterized subspecies of the inner dynein arms; however the interactions between many of the components of the I1 complex and the axoneme are not well defined.

View Article and Find Full Text PDF

Four [(CdSe)13(RNH2)13] derivatives (R = n-propyl, n-pentyl, n-octyl, and oleyl) are prepared by reaction of Cd(OAc)2·2H2O and selenourea in the corresponding primary-amine solvent. Nanoclusters grow in spontaneously formed amine-bilayer templates and are characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, TEM, and low-angle XRD. Derivative [(CdSe)13(n-propylamine)13] is isolated as a yellowish-white solid (MP 98 °C) on the gram scale.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) transmit visual information topographically from the eye to the brain, creating a map of visual space in retino-recipient nuclei (retinotopy). This process is affected by retinal activity and by activity-independent molecular cues. Phr1, which encodes a presumed E3 ubiquitin ligase (PHR1), is required presynaptically for proper placement of RGC axons in the lateral geniculate nucleus and the superior colliculus, suggesting that increased levels of PHR1 target proteins may be instructive for retinotopic mapping of retinofugal projections.

View Article and Find Full Text PDF

Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin(Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre(+);Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts.

View Article and Find Full Text PDF

Top-down mass spectrometry is an emerging approach for the analysis of intact proteins. The term was coined as a contrast with the better-established, bottom-up strategy for analysis of peptide fragments derived from digestion, either enzymatically or chemically, of intact proteins. Although the term top-down originates from proteomics, it can also be applied to mass spectrometric analysis of intact large biomolecules that are constituents of protein assemblies or complexes.

View Article and Find Full Text PDF

Connexin43 (Cx43) is a major cardiac gap junction channel protein required for normal electrical and contractile activity. Gap junction channel assembly, function, and turnover are regulated by phosphorylation under both normal and disease conditions. The carboxyl terminus (CT) of Cx43 contains numerous amino acid residues that are phosphorylated by protein kinases.

View Article and Find Full Text PDF

Although bottom-up proteomics using tryptic digests is widely used to locate post-translational modifications (PTM) in proteins, there are cases where the protein has several potential modification sites within a tryptic fragment and MS(2) strategies fail to pinpoint the location. We report here a method using two proteolytic enzymes, trypsin and pepsin, in combination followed by tandem mass spectrometric analysis to provide fragments that allow one to locate the modification sites. We used this strategy to find a glycosylation site on bovine trypsin expressed in maize (TrypZean).

View Article and Find Full Text PDF
Article Synopsis
  • Hexamethoxy-calix[6]arene was successfully modified with p-phosphonic acid groups, achieving a yield of 57% in three steps.
  • X-ray diffraction confirmed the compound's solid-state structure as either a nitrate salt or two calcium complexes, differing in calcium ion ratios (3:1 or 4:1).
  • Hirshfeld surface analysis revealed significant interactions between the phosphonic acids, hydroxyl groups, and calcium, while MALDI-TOF MS showed the formation of nano-arrays with up to 28 calixarene units.
View Article and Find Full Text PDF

A method for the study of reactions of open-shell neutrals (radicals) and radical cations is described. Pyrolysis (25-1500 degrees C) of thermally labile compounds, such as, 1,5-hexadiene via a Chen nozzle yields a seeded beam of reactive species in helium. The pyrolysis products are then analyzed by electron ionization (EI) or reacted with stored ions.

View Article and Find Full Text PDF

Pathogen recognition by T cells is dependent on their exquisite specificity for self-major histocompatibility complex (MHC) molecules presenting a bound peptide. Although this specificity results from positive and negative selection of developing T cells in the thymus, the relative contribution of these two processes remains controversial. To address the relation between the selecting peptide-MHC complex and the specificity of mature T cells, we generated transgenic mice that express a single peptide-MHC class I complex.

View Article and Find Full Text PDF

Somatodendritic A-type (I(A)) voltage-gated K(+) (K(V)) channels are key regulators of neuronal excitability, functioning to control action potential waveforms, repetitive firing and the responses to synaptic inputs. Rapidly activating and inactivating somatodendritic I(A) channels are encoded by K(V)4 alpha subunits and accumulating evidence suggests that these channels function as components of macromolecular protein complexes. Mass spectrometry (MS)-based proteomic approaches were developed and exploited here to identify potential components and regulators of native brain K(V)4.

View Article and Find Full Text PDF

The mechanism of the multiple charging of macromolecules in electrospray ionization (ESI) continues to inspire debate and controversy. Recently, we proposed that the number of charges on a macromolecule is determined by the emission of small charge carriers from macromolecule-containing nanodroplets and that, after solvent evaporation, the remaining charge is transferred to the macromolecule. In this study, we tested the applicability of this new theory for macromolecular, positive-ion ESI mass spectrometry by measuring the mean charge states and charge distributions of globular proteins under non-denaturing and denaturing conditions.

View Article and Find Full Text PDF

Although multiple charging in electrospray ionization (ESI) is essential to protein mass spectrometry, the underlying mechanism of multiple charging has not been explicated. Here, we present a new theory to describe ESI of native-state proteins and predict the number of excess charges on proteins in ESI. The theory proposes that proteins are ionized as charged residues in ESI, as they retain residual excess charges after solvent evaporation and do not desorb from charged ESI droplets.

View Article and Find Full Text PDF

The diversity of Ags targeted by T cells in autoimmune diabetes is unknown. In this study, we identify and characterize a limited number of naturally processed peptides from pancreatic islet beta-cells selected by diabetogenic I-A(g7) molecules of NOD mice. We used insulinomas transfected with the CIITA transactivator, which resulted in their expression of class II histocompatibility molecules and activation of diabetogenic CD4 T cells.

View Article and Find Full Text PDF