Publications by authors named "Henry T Beaman"

A major challenge in tissue engineering scaffolds is controlling scaffold degradation rates during healing while maintaining mechanical properties to support tissue formation. Hydrogels are three-dimensional matrices that are widely applied as tissue scaffolds based on their unique properties that can mimic the extracellular matrix. In this study, we develop a hybrid natural/synthetic hydrogel platform to tune the properties for tissue engineering scaffold applications.

View Article and Find Full Text PDF

Hydrogels are broadly employed in wound healing applications due to their high water content and tissue-mimicking mechanical properties. Healing is hindered by infection in many types of wound, including Crohn's fistulas, tunneling wounds that form between different portions of the digestive system in Crohn's disease patients. Owing to the rise of drug-resistant infections, alternate approaches are required to treat wound infections beyond traditional antibiotics.

View Article and Find Full Text PDF

Cell transplant therapies show potential as treatments for a large number of diseases. The encapsulation of cells within hydrogels is often used to mimic the extracellular matrix and protect cells from the body's immune response. However, cell encapsulation can be limited in terms of both scaffold size and cell viability due to poor nutrient and waste transport throughout the bulk of larger volume hydrogels.

View Article and Find Full Text PDF

Polyurethane foams present a tunable biomaterial platform with potential for use in a range of regenerative medicine applications. Achieving a balance between scaffold degradation rates and tissue ingrowth is vital for successful wound healing, and significant in vivo testing is required to understand these processes. Vigorous in vitro testing can minimize the number of animals that are required to gather reliable data; however, it is difficult to accurately select in vitro degradation conditions that can effectively mimic in vivo results.

View Article and Find Full Text PDF

Crohn's disease, a form of inflammatory bowel disease, commonly results in fistulas, tunneling wounds between portions of the urinary, reproductive, and/or digestive systems. These tunneling wounds cause pain, infection, and abscess formation. Of Crohn's patients with fistula formation, 83% undergo surgical intervention to either drain or bypass the fistula openings, and ~23% of these patients ultimately require bowel resections.

View Article and Find Full Text PDF

Although there are many hemostatic agents available for use on the battlefield, uncontrolled hemorrhage is still the primary cause of preventable death. Current hemostatic dressings include QuikClot® Combat Gauze (QCCG) and XStat®, which have inadequate success in reducing mortality. To address this need, a new hemostatic material was developed using shape memory polymer (SMP) foams, which demonstrate biocompatibility, rapid clotting, and shape recovery to fill the wound site.

View Article and Find Full Text PDF

Uncontrolled hemorrhage is the leading cause of preventable death on the battlefield and results in ∼1.5 million deaths each year. The primary current treatment options are gauze and/or tourniquets, which are ineffective for up to 80% of wounds.

View Article and Find Full Text PDF

Shape memory polymer foam hemostats are a promising option for future hemorrhage control in battlefield wounds. To enable their use as hemostatic devices, they must be optimized in terms of formulation and architecture, and their safety and efficacy must be characterized in animal models. Relevant in vitro models can be used for device optimization to help mitigate the excess use of animals and reduce costs of clinical translation.

View Article and Find Full Text PDF