Publications by authors named "Henry Shuman"

The cytoskeletal motors myosin, kinesin, and dynein and their corresponding tracks, actin and microtubules, are force generating ATPases responsible for motility and morphological changes at the intracellular, cellular, and tissue levels. The pioneering application of optical tweezers to measure the force-producing properties of cytoskeletal motors has provided an unparalleled understanding of their mechanochemistry. The mechanosensitivity of processive, microtubule-based motors has largely been studied in the optical trap using the "single-bead" assay, where a bead-attached motor is held adjacent to a cytoskeletal filament as it processively steps along it.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathies (HCMs) are the leading cause of acute cardiac failure in young individuals. Over 300 mutations throughout β-cardiac myosin, including in the motor domain, are associated with HCM. A β-cardiac myosin motor mutation (R712L) leads to a severe form of HCM.

View Article and Find Full Text PDF

Kinesin motors and their associated microtubule tracks are essential for long-distance transport of cellular cargos. Intracellular activity and proper recruitment of kinesins is regulated by biochemical signaling, cargo adaptors, microtubule-associated proteins, and mechanical forces. In this study, we found that the effect of opposing forces on the kinesin-microtubule attachment duration depends strongly on experimental assay geometry.

View Article and Find Full Text PDF

Myosins adjust their power outputs in response to mechanical loads in an isoform-dependent manner, resulting in their ability to dynamically adapt to a range of motile challenges. Here, we reveal the structural basis for force-sensing based on near-atomic resolution structures of one rigor and two ADP-bound states of myosin-IB (myo1b) bound to actin, determined by cryo-electron microscopy. The two ADP-bound states are separated by a 25° rotation of the lever.

View Article and Find Full Text PDF

KIF16B is a highly processive kinesin-3 family member that participates in the trafficking and tubulation of early endosomes along microtubules. KIF16B attaches to lipid cargoes via a PX motif at its C-terminus, which has nanomolar affinity for bilayers containing phosphatidylinositol-3-phosphate (PI[3]P). As the PX domain has been proposed to be a primary mechanical anchor for the KIF16B-cargo attachment, we measured the adhesion forces and detachment kinetics of the PX domain as it interacts with membranes containing 2% PI(3)P and 98% phosphatidylcholine.

View Article and Find Full Text PDF

The myosin superfamily of molecular motors utilizes energy from ATP hydrolysis to generate force and motility along actin filaments in a diverse array of cellular processes. These motors are structurally, kinetically, and mechanically tuned to their specific molecular roles in the cell. Optical trapping techniques have played a central role in elucidating the mechanisms by which myosins generate force and in exposing the remarkable diversity of myosin functions.

View Article and Find Full Text PDF

Vertebrate myosin-IC (Myo1c) is a type-1 myosin that links cell membranes to the cytoskeleton via its actin-binding motor domain and its phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding tail domain. While it is known that Myo1c bound to PtdIns(4,5)P2 in fluid-lipid bilayers can propel actin filaments in an unloaded motility assay, its ability to develop forces against external load on actin while bound to fluid bilayers has not been explored. Using optical tweezers, we measured the diffusion coefficient of single membrane-bound Myo1c molecules by force-relaxation experiments, and the ability of ensembles of membrane-bound Myo1c molecules to develop and sustain forces.

View Article and Find Full Text PDF

Myosins are molecular motors that generate force to power a wide array of motile cellular functions. Myosins have the inherent ability to change their ATPase kinetics and force-generating properties when they encounter mechanical loads; however, little is known about the structural elements in myosin responsible for force sensing. Recent structural and biophysical studies have shown that myosin-I isoforms, Myosin-Ib (Myo1b) and Myosin-Ic (Myo1c), have similar unloaded kinetics and sequences but substantially different responses to forces that resist their working strokes.

View Article and Find Full Text PDF

The heart adjusts its power output to meet specific physiological needs through the coordination of several mechanisms, including force-induced changes in contractility of the molecular motor, the β-cardiac myosin (βCM). Despite its importance in driving and regulating cardiac power output, the effect of force on the contractility of a single βCM has not been measured. Using single molecule optical-trapping techniques, we found that βCM has a two-step working stroke.

View Article and Find Full Text PDF

Myosins are molecular motors that power diverse cellular processes, such as rapid organelle transport, muscle contraction, and tension-sensitive anchoring. The structural adaptations in the motor that allow for this functional diversity are not known, due, in part, to the lack of high-resolution structures of highly tension-sensitive myosins. We determined a 2.

View Article and Find Full Text PDF

Many proteins that reside in the cytoplasm bind directly to cell membranes and play roles in signaling, adhesion, metabolism, cell structure, and cell motility. Several of these membrane-binding proteins, especially cytoskeletal proteins, have mechanical functions that result in the transmission of forces to the plasma membrane and organelle-membranes. Despite the importance of these interactions, remarkably little is known about the mechanical properties of the bonds between membranes and proteins.

View Article and Find Full Text PDF

Myosin IC (myo1c), a widely expressed motor protein that links the actin cytoskeleton to cell membranes, has been associated with numerous cellular processes, including insulin-stimulated transport of GLUT4, mechanosensation in sensory hair cells, endocytosis, transcription of DNA in the nucleus, exocytosis, and membrane trafficking. The molecular role of myo1c in these processes has not been defined, so to better understand myo1c function, we utilized ensemble kinetic and single-molecule techniques to probe myo1c's biochemical and mechanical properties. Utilizing a myo1c construct containing the motor and regulatory domains, we found the force dependence of the actin-attachment lifetime to have two distinct regimes: a force-independent regime at forces < 1 pN, and a highly force-dependent regime at higher loads.

View Article and Find Full Text PDF

Using a combined experimental and theoretical approach named binding-unbinding correlation spectroscopy (BUCS), we describe the two-dimensional kinetics of interactions between fibrinogen and the integrin αIIbβ3, the ligand-receptor pair essential for platelet function during hemostasis and thrombosis. The methodology uses the optical trap to probe force-free association of individual surface-attached fibrinogen and αIIbβ3 molecules and forced dissociation of an αIIbβ3-fibrinogen complex. This novel approach combines force clamp measurements of bond lifetimes with the binding mode to quantify the dependence of the binding probability on the interaction time.

View Article and Find Full Text PDF

Intracellular trafficking of organelles often involves cytoskeletal track switching. Organelles such as melanosomes are transported by multiple motors including kinesin-2, dynein, and myosin-V, which drive switching between microtubules and actin filaments during dispersion and aggregation. Here, we used optical trapping to determine the unitary and ensemble forces of kinesin-2, and to reconstitute cargo switching at cytoskeletal intersections in a minimal system with kinesin-2 and myosin-V motors bound to beads.

View Article and Find Full Text PDF

Myo1b is a myosin that is exquisitely sensitive to tension. Its actin-attachment lifetime increases > 50-fold when its working stroke is opposed by 1 pN of force. The long attachment lifetime of myo1b under load raises the question: how are actin attachments that last >50 s in the presence of force regulated? Like most myosins, forces are transmitted to the myo1b motor through a light-chain binding domain that is structurally stabilized by calmodulin, a calcium-binding protein.

View Article and Find Full Text PDF

Recordings from single molecule experiments can be aggregated to determine average kinetic properties of the system under observation. The kinetics after a synchronized reaction step can be interpreted using all of the standard tools developed for ensemble perturbation experiments. The kinetics leading up to a synchronized event, determined by the lifetimes of the preceding states; however, are not as obvious if the reaction has reversible steps or branches.

View Article and Find Full Text PDF

The ATP binding cassette, class A (ABCA) proteins are homologous polytopic transmembrane transporters that function as lipid pumps at distinct subcellular sites in a variety of cells. Located within the N terminus of these transporters, there exists a highly conserved xLxxKN motif of unknown function. To define its role, human ABCA3 was employed as a primary model representing ABCA transporters, while mouse ABCA1 was utilized to support major findings.

View Article and Find Full Text PDF

With the aid of brownian dynamics models, it is possible to estimate polymer tension by monitoring polymers' transverse thermal fluctuations. To assess the precision of the approach, brownian dynamics-based tension estimates were compared with the force applied to rhodamine-phalloidin labeled actin filaments bound to polymer beads and suspended between two optical traps. The transverse thermal fluctuations of each filament were monitored with a CCD camera, and the images were analyzed to obtain the filament's transverse displacement variance as a function of position along the filament, the filament's tension, and the camera's exposure time.

View Article and Find Full Text PDF

The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation, adhesion, and hemostasis. Employing an optical-trap-based electronic force clamp, we studied the thermodynamics and kinetics of αIIbβ3-fibrinogen bond formation and dissociation under constant unbinding forces, mimicking the forces of physiologic blood shear on a thrombus. The distribution of bond lifetimes was bimodal, indicating that the αIIbβ3-fibrinogen complex exists in two bound states with different mechanical stability.

View Article and Find Full Text PDF

Phosphoinositides regulate the activities and localization of many cytoskeletal proteins involved in crucial biological processes, including membrane-cytoskeleton adhesion. Yet little is known about the mechanics of protein-phosphoinositide interactions, or about the membrane-attachment mechanics of any peripheral membrane proteins. Myosin-Ic (myo1c) is a molecular motor that links membranes to the cytoskeleton via phosphoinositide binding, so it is particularly important to understand the mechanics of its membrane attachment.

View Article and Find Full Text PDF

Background: Cellular activities such as endocytosis and secretion require that cargos actively switch between the microtubule (MT) and actin filament (AF) networks. Cellular studies suggest that switching may involve a tug of war or coordinate regulation of MT- and AF-based motor function.

Results: To test the hypothesis that motor number can be used to direct the outcome of a tug-of-war process, we reconstituted cargo switching at MT-AF intersections in a minimal system with purified myosin V and dynein-dynactin motors bound to beads.

View Article and Find Full Text PDF

Myosin-Is are molecular motors that link cellular membranes to the actin cytoskeleton, where they play roles in mechano-signal transduction and membrane trafficking. Some myosin-Is are proposed to act as force sensors, dynamically modulating their motile properties in response to changes in tension. In this study, we examined force sensing by the widely expressed myosin-I isoform, myo1b, which is alternatively spliced in its light chain binding domain (LCBD), yielding proteins with lever arms of different lengths.

View Article and Find Full Text PDF

The ability to sense molecular tension is crucial for a wide array of cellular processes, including the detection of auditory stimuli, control of cell shape, and internalization and transport of membranes. We show that myosin I, a motor protein that has been implicated in powering key steps in these processes, dramatically alters its motile properties in response to tension. We measured the displacement generated by single myosin I molecules, and we determined the actin-attachment kinetics with varying tensions using an optical trap.

View Article and Find Full Text PDF

Kinesin and cytoplasmic dynein are microtubule-based motor proteins that actively transport material throughout the cell. Microtubules can intersect at a variety of angles both near the nucleus and at the cell periphery, and the behavior of molecular motors at these intersections has implications for long-range transport efficiency and accuracy. To test motor function at microtubule intersections, crossovers were arranged in vitro using flow to orient successive layers of filaments.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvm0s4a7iuoq2pc1o2653ihtpqjh18omd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once