Background: Leg length discrepancy (LLD) is a common complication after total hip arthroplasty (THA) leading to significant morbidity and dissatisfaction for patients. A popular system for robotic arm-assisted THA utilizes preoperative computed tomography (CT) scans for surgical planning. Accurate measurement of leg length is crucial for restoring appropriate patient anatomy during the procedure.
View Article and Find Full Text PDFEstrogen receptor-positive (ER+) breast cancer can recur up to 20 years after initial diagnosis. Delayed recurrences arise from disseminated tumors cells (DTCs) in sites such as bone marrow that remain quiescent during endocrine therapy and subsequently proliferate to produce clinically detectable metastases. Identifying therapies that eliminate DTCs and/or effectively target cells transitioning to proliferation promises to reduce risk of recurrence.
View Article and Find Full Text PDFBackground: Mitochondrial dynamics underlies malignant transformation, cancer progression, and response to treatment. Current research presents conflicting evidence for functions of mitochondrial fission and fusion in tumor progression. Here, we investigated how mitochondrial fission and fusion states regulate underlying processes of cancer progression and metastasis in triple-negative breast cancer (TNBC).
View Article and Find Full Text PDFMigration and invasion of cancer cells constitute fundamental processes in tumor progression and metastasis. Migratory cancer cells commonly upregulate expression of plasminogen activator inhibitor 1 (PAI1), and PAI1 correlates with poor prognosis in breast cancer. However, mechanisms by which PAI1 promotes migration of cancer cells remain incompletely defined.
View Article and Find Full Text PDFBone constitutes the most common site of breast cancer metastases either at time of presentation or recurrent disease years after seemingly successful therapy. Bone metastases cause substantial morbidity, including life-threatening spinal cord compression and hypercalcemia. Given the high prevalence of patients with breast cancer, health-care costs of bone metastases (>$20,000 per episode) impose a tremendous economic burden on society.
View Article and Find Full Text PDFThe advent of adaptive manufacturing techniques supports the vision of cell-instructive materials that mimic biological tissues. 3D jet writing, a modified electrospinning process reported herein, yields 3D structures with unprecedented precision and resolution offering customizable pore geometries and scalability to over tens of centimeters. These scaffolds support the 3D expansion and differentiation of human mesenchymal stem cells in vitro.
View Article and Find Full Text PDFIsolation of tumor-initiating cells currently relies on markers that do not reflect essential biologic functions of these cells. We proposed to overcome this limitation by isolating tumor-initiating cells based on enhanced migration, a function tightly linked to tumor-initiating potential through epithelial-to-mesenchymal transition (EMT). We developed a high-throughput microfluidic migration platform with automated cell tracking software and facile recovery of cells for downstream functional and genetic analyses.
View Article and Find Full Text PDF