Purpose: The energy-yielding mitochondrial Krebs cycle has been shown in many cancers and other diseases to be inhibited or mutated. In most cells, the Krebs cycle with oxidative phosphorylation generates approximately 90% of the adenosine triphosphate in the cell. We designed and hyperpolarized carbon-13 labeled succinate (SUC) and its derivative diethyl succinate (DES) to interrogate the Krebs cycle in real-time in cancer animal models.
View Article and Find Full Text PDFPurpose: To assess the feasibility of a perfusion magnetic resonance (MR) imaging technique that uses Overhauser dynamic nuclear polarization (DNP) to provide contrast during the continuous delivery of hyperpolarized water in rats.
Materials And Methods: Protocols approved by the local institutional animal care and use committees were followed. Twelve male Wistar rats were anesthetized and prepared by placing injection tubing in the subcutaneous layer (n=3), peritoneum (n=3), aorta (n=3), or carotid artery (n=3).
The Krebs tricarboxylic acid cycle (TCA) is central to metabolic energy production and is known to be altered in many disease states. Real-time molecular imaging of the TCA cycle in vivo will be important in understanding the metabolic basis of several diseases. Positron emission tomography (PET) with FDG-glucose (2-[(18)F]fluoro-2-deoxy-d-glucose) is already being used as a metabolic imaging agent in clinics.
View Article and Find Full Text PDFMR techniques using hyperpolarized (13)C have successfully produced examples of angiography and intermediary metabolic imaging, but, to date, no receptor imaging has been attempted. The goal of this study was to synthesize and evaluate a novel hyperpolarizable molecule, 2,2,3,3-tetrafluoropropyl 1-(13)C-propionate-d(2,3,3) (TFPP), for the detection of atheromatous plaques in vivo. TFPP binds to lipid bilayers and its use in hyperpolarized MR could prove to be a major step towards receptor imaging.
View Article and Find Full Text PDF