Cellular therapy development and manufacturing has focused on providing novel therapeutic cell-based products for various diseases. The International Organization for Standardization (ISO) has provided guidance on critical quality attributes (CQAs) that shall be considered when testing and releasing cellular therapeutic products. Cell count and viability measurements are two of the CQAs that are determined during development, manufacturing, testing, and product release.
View Article and Find Full Text PDFIn cellular therapies chimeric antigen receptor (CAR) T or NK cells undergo phenotypic analysis at multiple stages during discovery and development of novel therapies. Patient samples are routinely analyzed via flow cytometry for population identification and distribution of CD3, CD4, and CD8 positive T cells. As an alternative or orthogonal method, image cytometry systems have been used to perform simple cell-based assays in lieu of flow cytometry.
View Article and Find Full Text PDFBackground: Previous studies have demonstrated that the glycosaminoglycans (GAGs) heparan sulfate (HS) and hyaluronic acid (HA) are mechanosensors for interstitial flow on cancer cells. The proteins that link the GAGs to the cancer cell for mechanotransduction, however, are not known.
Objective: To assess whether the HS proteoglycan core proteins, Glypican-1 and Syndecan-1, or the HA receptor, CD44, provides the mechanical linkage to the cell.
The surface proteoglycan/glycoprotein layer (glycocalyx) on tumor cells has been associated with cellular functions that can potentially enable invasion and metastasis. In addition, aggressive tumor cells with high metastatic potential have enhanced invasion rates in response to interstitial flow stimuli in vitro. Our previous studies suggest that heparan sulfate (HS) in the glycocalyx plays an important role in this flow mediated mechanostransduction and upregulation of invasive and metastatic potential.
View Article and Find Full Text PDFIntegr Biol (Camb)
November 2013
Background: Glioma cells are exposed to elevated interstitial fluid flow during the onset of angiogenesis, at the tumor periphery while invading normal parenchyma, within white matter tracts, and during vascular normalization therapy. Glioma cell lines that have been exposed to fluid flow forces in vivo have much lower invasive potentials than in vitro cell motility assays without flow would indicate.
Methodology/principal Findings: A 3D Modified Boyden chamber (Darcy flow through collagen/cell suspension) model was designed to mimic the fluid dynamic microenvironment to study the effects of fluid shear stress on the migratory activity of glioma cells.
The migration of vascular smooth muscle cells (SMCs) and fibroblasts into the intima after vascular injury is a central process in vascular lesion formation. The elevation of transmural interstitial flow is also observed after damage to the vascular endothelium. We have previously shown that interstitial flow upregulates matrix metalloproteinase-1 (MMP-1) expression, which in turn promotes SMC and fibroblast migration in collagen I gels.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2009
Neointima formation often occurs in regions where the endothelium has been damaged and the transmural interstitial flow is elevated. Vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts (FBs/MFBs) contribute to intimal thickening by migrating from the media and adventitia into the site of injury. In this study, for the first time, the direct effects of interstitial flow on SMC and FB/MFB migration were investigated in an in vitro three-dimensional system.
View Article and Find Full Text PDF