Int J Comput Assist Radiol Surg
July 2023
Purpose: Navigating with continuous X-ray provides visual guidance, but exposes both surgeon and patient to ionizing radiation, which is associated with serious health risks. Interleaving fluoro snapshots with electromagnetic tracking (EMT) potentially minimizes radiation.
Methods: We propose hybrid EMT + X-ray (HEX), a research framework for navigation with an emphasis on safe experimentation.
Purpose: Electromagnetic tracking (EMT) can partially replace X-ray guidance in minimally invasive procedures, reducing radiation in the OR. However, in this hybrid setting, EMT is disturbed by metallic distortion caused by the X-ray device. We plan to make hybrid navigation clinical reality to reduce radiation exposure for patients and surgeons, by compensating EMT error.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
June 2020
Purpose: Electromagnetic tracking (EMT) can potentially complement fluoroscopic navigation, reducing radiation exposure in a hybrid setting. Due to the susceptibility to external distortions, systematic error in EMT needs to be compensated algorithmically. Compensation algorithms for EMT in guidewire procedures are only practical in an online setting.
View Article and Find Full Text PDFPurpose: Navigation in high-precision minimally invasive surgery (HP-MIS) demands high tracking accuracy in the absence of line of sight (LOS). Currently, no tracking technology can satisfy this requirement. Electromagnetic tracking (EMT) is the best tracking paradigm in the absence of LOS despite limited accuracy and robustness.
View Article and Find Full Text PDF