Antibodies are proteins produced by the immune system that can identify and neutralise a wide variety of antigens with high specificity and affinity, and constitute the most successful class of biotherapeutics. With the advent of next-generation sequencing, billions of antibody sequences have been collected in recent years, though their application in the design of better therapeutics has been constrained by the sheer volume and complexity of the data. To address this challenge, we present IgBert and IgT5, the best performing antibody-specific language models developed to date which can consistently handle both paired and unpaired variable region sequences as input.
View Article and Find Full Text PDFSummary: In this article, we introduce ABodyBuilder3, an improved and scalable antibody structure prediction model based on ABodyBuilder2. We achieve a new state-of-the-art accuracy in the modelling of CDR loops by leveraging language model embeddings, and show how predicted structures can be further improved through careful relaxation strategies. Finally, we incorporate a predicted Local Distance Difference Test into the model output to allow for a more accurate estimation of uncertainties.
View Article and Find Full Text PDFThe integrative analysis of high-throughput reporter assays, machine learning, and profiles of epigenomic chromatin state in a broad array of cells and tissues has the potential to significantly improve our understanding of noncoding regulatory element function and its contribution to human disease. Here, we report results from the CAGI 5 regulation saturation challenge where participants were asked to predict the impact of nucleotide substitution at every base pair within five disease-associated human enhancers and nine disease-associated promoters. A library of mutations covering all bases was generated by saturation mutagenesis and altered activity was assessed in a massively parallel reporter assay (MPRA) in relevant cell lines.
View Article and Find Full Text PDF