Advancement on computer and sensing technologies has generated exponential growth in the data available for the development of systems that support decision-making in fields such as health, entertainment, manufacturing, among others. This fact has made that the fusion of data from multiple and heterogeneous sources became one of the most promising research fields in machine learning. However, in real-world applications, to reduce the number of sources while maintaining optimal system performance is an important task due to the availability of data and implementation costs related to processing, implementation, and development times.
View Article and Find Full Text PDF