A number of factors may impinge on thermal homeostasis in the early embryo. The most obvious is the ambient temperature in which development occurs. Physiologically, the temperature in the lumen of the female tract is typically lower than the core body temperature, yet rises at ovulation in the human, while in an IVF setting, embryos are usually maintained at core body temperature.
View Article and Find Full Text PDFThis article revisits the hypothesis, proposed in 2002, that the successful development of oocytes and preimplantation mammalian embryos is associated with a metabolism which is "quiet" rather than "active", within limits which had yet to be defined. A distinction was drawn between Functional Quietness, Loss of quietness in response to stress and Inter-individual differences in embryo metabolism and here we document applications of the hypothesis to other areas of reproductive biology. In order to encompass the requirement for "limits" and replace the simple distinction between "quiet" and "active", evidence is presented which led to a re-working of the hypothesis by proposing the existence of an optimal range of metabolic activity, termed a "Goldilocks zone", within which oocytes and embryos with maximum developmental potential will be located.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2021
Amino acids are now recognised as having multiple cellular functions in addition to their traditional role as constituents of proteins. This is well-illustrated in the early mammalian embryo where amino acids are now known to be involved in intermediary metabolism, as energy substrates, in signal transduction, osmoregulation and as intermediaries in numerous pathways which involve nitrogen metabolism, e.g.
View Article and Find Full Text PDFThe use of in vitro embryo production in the horse is increasing in clinical and research settings; however, protocols are yet to be optimised. Notably, the two most commonly used base media for in vitro maturation (IVM) supply glucose at markedly different concentrations: physiological (5.6 mM, M199) or supraphysiological (17 mM, DMEM/F-12).
View Article and Find Full Text PDFNumerical data in biology and medicine are commonly presented as mean or median with error or confidence limits, to the exclusion of individual values. Analysis of our own and others' data indicates that this practice risks excluding 'Goldilocks' effects in which a biological variable falls within a range between 'too much' and 'too little' with a region between where its function is 'just right'; a concept captured by the Swedish term 'Lagom'. This was confirmed by a narrative search of the literature using the PubMed database, which revealed numerous relationships of biological and clinical phenomena of the Goldilocks/Lagom form including quantitative and qualitative examples from the health and social sciences.
View Article and Find Full Text PDFMitochondria provide the major source of ATP for mammalian oocyte maturation and early embryo development. Oxygen Consumption Rate (OCR) is an established measure of mitochondrial function. OCR by mammalian oocytes and embryos has generally been restricted to overall uptake and detailed understanding of the components of OCR dedicated to specific molecular events remains lacking.
View Article and Find Full Text PDFOviduct fluid is the microenvironment that supports early reproductive processes including fertilisation, embryo cleavage, and genome activation. However, the composition and regulation of this critical environment remains rather poorly defined. This study uses an in vitro preparation of the bovine oviduct epithelium, to investigate the formation and composition of in vitro derived oviduct fluid (ivDOF) within a controlled environment.
View Article and Find Full Text PDFThe quiet embryo hypothesis postulates that early embryo viability is associated with a relatively low metabolism (Leese, 2002 BioEssays 24: 845-849). This proposal is re-visited here using retrospective and prospective data on the metabolic activity and kinetics of preimplantation development alongside the concept that an optimal range of such indices and of energetic efficiency influences embryogenesis. It is concluded that these considerations may be rationalized by proposing the existence of a "Goldilocks zone," or as it is known in Sweden, of lagom-meaning "just the right amount"-within which embryos with maximum developmental potential can be categorized.
View Article and Find Full Text PDFThe epithelium lining the oviduct is critical for early reproductive events, many of which are mediated via intracellular calcium ions. Despite this, little is known about the regulation of calcium homeostasis in the oviductal epithelium. Epithelial transient receptor potential channels (TRPCs) modulate calcium flux in other tissues, and their expression and functional regulation have therefore been examined using the bovine oviduct as a model for the human.
View Article and Find Full Text PDFThe basic pattern of metabolism in mammalian oocytes and early embryos was established in the 1960s and 1970s, largely in terms of the consumption of oxygen and the utilisation of nutrients present in culture media at the time, mainly glucose, pyruvate and lactate. The potential importance of endogenous fuels was also recognised but was largely ignored, only to be rediscovered quite recently. The 1980s and 1990s saw the arrival of a 'new generation' of culture media, characterised metabolically by the addition of amino acids, an initiative driven strongly by the need to improve embryo culture and selection methods in assisted reproductive technologies.
View Article and Find Full Text PDFStudy Question: Is the developmental timing and metabolic regulation disrupted in embryos from overweight or obese women?
Summary Answer: Oocytes from overweight or obese women are smaller than those from women of healthy weight, yet post-fertilization they reach the morula stage faster and, as blastocysts, show reduced glucose consumption and elevated endogenous triglyceride levels.
What Is Known Already: Female overweight and obesity is associated with infertility. Moreover, being overweight or obese around conception may have significant consequences for the unborn child, since there are widely acknowledged links between events occurring during early development and the incidence of a number of adult disorders.
This article summarises presentations at the plenary session of the Annual Meeting of the British Fertility Society, on Effective nutrition from conception to adulthood, held in Sheffield, UK in January 2014. It highlights the pivotal role of the late David Barker (1938-2014) in revolutionising our understanding of the influence of maternal, gamete, embryo, foetal and infant nutrition on the health of the offspring in later life.
View Article and Find Full Text PDFHum Reprod Update
October 2014
Background: Most tissues in the body rely on the presence of gap junctions in order to couple their component cells electrically and metabolically via intercellular transport of ions, metabolites and signalling agents. As a result, cells within tissues achieve a high degree of, 'metabolic homogeneity' which enables them to develop in an integrated way and co-ordinate their response to physiological signals and environmental cues. Unusually, the developing mammalian preimplantation embryo does not form functional gap junctions until it has divided into 8 or more cells.
View Article and Find Full Text PDFNon-invasive assay of the consumption and release of metabolites by individual human embryos could allow selection at the cleavage stage of development and facilitate Single Embryo Transfer in clinical IVF but will require simple, high throughput, sensitive methods applicable to small volume samples. A rapid, simple, non-invasive method has therefore been devised using a standard fluorescence plate reader, and used to measure the consumption of pyruvate and glucose, and release of lactate by single bovine embryos at all stages of preimplantation development in culture; amino acid profiles have been determined using HPLC. Early embryos with an 'intermediate' level (6.
View Article and Find Full Text PDFPreviously, we have shown that a maternal low protein diet, fed exclusively during the preimplantation period of mouse development (Emb-LPD), is sufficient to induce by the blastocyst stage a compensatory growth phenotype in late gestation and postnatally, correlating with increased risk of adult onset cardiovascular disease and behavioural dysfunction. Here, we examine mechanisms of induction of maternal Emb-LPD programming and early compensatory responses by the embryo. Emb-LPD induced changes in maternal serum metabolites at the time of blastocyst formation (E3.
View Article and Find Full Text PDFCreatine Kinase (CK) catalyses the "creatine shuttle," the reversible conversion of creatine phosphate to creatine with the liberation of ATP. This article examines the potential role of the creatine shuttle in the provision of ATP during mouse preimplantation embryo development. Using quantitative PCR, transcripts of four subunit isoforms of CK--CKM, CKB, CKMT1, and CKMT2--were detectable at all developmental stages, from the presumptive zygote to late blastocyst, but there was no obvious pattern in gene expression.
View Article and Find Full Text PDFThis review considers how our understanding of preimplantation embryo metabolism has progressed since the pioneering work on this topic in the late 1960s and early 1970s. Research has been stimulated by a desire to understand how metabolic events contribute to the development of the zygote into the blastocyst, the need for biomarkers of embryo health with which to improve the success of assisted conception technologies, and latterly by the 'Developmental Origins of Health and Disease' (DOHaD) concept. However, arguably, progress has not been as great as it might have been due to methodological difficulties in working with tiny amounts of tissue and the low priority assigned to fundamental research on fertility and infertility, with developments driven more by technical than scientific advances.
View Article and Find Full Text PDFAmino acid profiling has been used to distinguish between human embryos of differing developmental competence. We sought to determine whether amino acid profiling could be used to distinguish between metaphase II (MII) bovine oocytes with different developmental capabilities in vitro. Amino acid turnover was assayed during the final 6 h of in vitro maturation prior to oocytes undergoing individual fertilization in vitro.
View Article and Find Full Text PDFElevated concentrations of serum non-esterified fatty acids (NEFA), associated with maternal disorders such as obesity and type II diabetes, alter the ovarian follicular micro-environment and have been associated with subfertility arising from reduced oocyte developmental competence. We have asked whether elevated NEFA concentrations during oocyte maturation affect the development and physiology of zygotes formed from such oocytes, using the cow as a model. The zygotes were grown to blastocysts, which were evaluated for their quality in terms of cell number, apoptosis, expression of key genes, amino acid turnover and oxidative metabolism.
View Article and Find Full Text PDFInsight into the normal and abnormal function of an interphase nucleus can be revealed by using fluorescence in situ hybridization (FISH) to determine chromosome copy number and/or the nuclear position of loci or chromosome territories. FISH has been used extensively in studies of mouse and human early embryos, however, translation of such methods to domestic species have been hindered by the presence of high levels of intracytoplasmic lipid in these embryos which can impede the efficiency of FISH. This chapter describes in detail a FISH protocol for overcoming this problem.
View Article and Find Full Text PDFThis study investigated the relationship between human preimplantation embryo metabolism and aneuploidy rates during development in vitro. One hundred and eighty-eight fresh and cryopreserved embryos from 59 patients (33.9 +/- 0.
View Article and Find Full Text PDFThis review examines the 'Quiet Embryo Hypothesis' which proposes that viable preimplantation embryos operate at metabolite or nutrient turnover rates distributed within lower ranges than those of their less viable counterparts. The 'quieter' metabolism consistent with this hypothesis is considered in terms of (i) 'functional' quietness; the contrasting levels of intrinsic metabolic activity in different cell types as a consequence of their specialized functions, (ii) inter-individual embryo/cell differences in metabolism and (iii) loss of quietness in response to environmental stress. Data are reviewed which indicate that gametes and early embryos function in vivo at a lower temperature than core body temperature, which could encourage the expression of a quiet metabolism.
View Article and Find Full Text PDFThis review assesses the ability of non-invasive 'amino acid profiling' to predict early embryo viability. The history of amino acid supplementation of embryo culture media and the role of amino acids in early embryo development are first considered and these are followed by a review of methods to quantify amino acid depletion and production by single embryos. Data on amino acid profiling of embryos from a number of species are then discussed.
View Article and Find Full Text PDFBackground: Embryos with greater viability have a lower or 'quieter' amino acid metabolism than those which arrest. We have hypothesized this is due to non-viable embryos possessing greater cellular/molecular damage and consuming more nutrients, such as amino acids for repair processes. We have tested this proposition by measuring physical damage to DNA in bovine, porcine and human embryos at the blastocyst stage and relating the data to amino acid profiles during embryo development.
View Article and Find Full Text PDFGrowing oocytes in vitro from the most immature stages until they are developmentally competent is a major goal of reproductive technology, requiring fundamental knowledge of metabolic processes. Carbohydrate metabolism and oxygen consumption have been analysed in a series of experiments designed to investigate important energy substrates for mouse oocytes and to reveal any qualitative or quantitative changes between the primordial and ovulatory follicle stages. Primordial follicles were incubated in groups in modified-KSOM medium, whereas growing or ovulated oocytes were studied singly and, in both cases, the depletion or accumulation of metabolites in spent medium were analysed using ultramicrofluorometric assays.
View Article and Find Full Text PDF