Background: The discovery of adrenoceptors, which mediate the effects of the sympathetic nervous system neurotransmitter norepinephrine on specific tissues, sparked the development of sympathomimetics that have profound influence on skeletal muscle mass. However, chronic administration has serious side effects that preclude their use for muscle-wasting conditions such as sarcopenia, the age-dependent decline in muscle mass, force, and power. Devising interventions that can adjust neurotransmitter release to changing physiological demands will require understanding how the sympathetic nervous system affects muscle motor innervation and muscle mass, which will prevent sarcopenia-associated impaired mobility, falls, institutionalization, co-morbidity, and premature death.
View Article and Find Full Text PDFExamining neural etiologic factors'role in the decline of neuromuscular function with aging is essential to our understanding of the mechanisms underlying sarcopenia, the age-dependent decline in muscle mass, force and power. Innervation of the skeletal muscle by both motor and sympathetic axons has been established, igniting interest in determining how the sympathetic nervous system (SNS) affect skeletal muscle composition and function throughout the lifetime. Selective expression of the heart and neural crest derivative 2 gene in peripheral SNs increases muscle mass and force regulating skeletal muscle sympathetic and motor innervation; improving acetylcholine receptor stability and NMJ transmission; preventing inflammation and myofibrillar protein degradation; increasing autophagy; and probably enhancing protein synthesis.
View Article and Find Full Text PDFBackground: Sarcopenia, or age-dependent decline in muscle force and power, impairs mobility, increasing the risk of falls, institutionalization, co-morbidity, and premature death. The discovery of adrenoceptors, which mediate the effects of the sympathetic nervous system (SNS) neurotransmitter norepinephrine on specific tissues, sparked the development of sympathomimetics that have profound influence on skeletal muscle mass. However, chronic administration has serious side effects that preclude their use for muscle-wasting conditions.
View Article and Find Full Text PDFAnalysis of skeletal muscle mass and composition is essential for studying the biology of age-related sarcopenia, loss of muscle mass, and function. Muscle immunohistochemistry (IHC) allows for simultaneous visualization of morphological characteristics and determination of fiber type composition. The information gleaned from myosin heavy chain (MHC) isoform, and morphological measurements offer a more complete assessment of muscle health and properties than classical techniques such as SDS-PAGE and ATPase immunostaining; however, IHC quantification is a time-consuming and tedious method.
View Article and Find Full Text PDF