Publications by authors named "Henry J Binder"

Article Synopsis
  • The study examined the effects of dietary amylase resistant starch (RS) on intestinal fermentation in stunted versus healthy children in southern India.
  • Results indicated that while both types of RS (HAMS and HAMSA) reduced fecal pH and increased certain short-chain fatty acids (SCFA), particularly acetate and propionate, only HAMS improved butyrate levels in both groups, whereas HAMSA did not benefit stunted children.
  • Stunted children exhibited lower SCFA concentrations and impaired fermentation of certain RS types, suggesting the need for tailored dietary formulations to enhance microbial function in this population.
View Article and Find Full Text PDF

Background: Fluid deficits exceeding 1.6% can lead to physical and cognitive impairment in athletes. Sport drinks used by athletes are often hyper-osmolar but this is known to be suboptimal for rehydration in medical settings and does not utilize colonic absorptive capacity.

View Article and Find Full Text PDF

Studies on the efficacy of zinc supplementation for treatment or prevention of diarrhea have shown an inconsistent effect in populations at risk for zinc deficiency. Unlike drugs, which have no preexisting presence in the body, endogenous zinc must be assessed pharmacokinetically by isotope tracer studies. Although such methods have produced much data, very few studies have estimated the dose and the timing of dosing of zinc supplementation.

View Article and Find Full Text PDF

Mammalian colonic epithelia consist of cells that are capable of both absorbing and secreting Cl-. The present studies employing Ussing chamber technique identified two opposing short-circuit current (Isc) responses to basolateral bumetanide in rat distal colon. Apart from the transepithelial Cl--secretory Isc in early distal colon that was inhibited by bumetanide, bumetanide also stimulated Isc in late distal colon that had not previously been identified.

View Article and Find Full Text PDF

Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na(+) absorption. Although colonic Na(+) absorption is mediated by both epithelial Na(+) channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na(+) absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na(+) absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC.

View Article and Find Full Text PDF

Colonic bicarbonate (HCO3(-)) secretion is a well-established physiological process that is closely linked to overall fluid and electrolyte movement in the mammalian colon. These present studies show that extracellular calcium-sensing receptor (CaSR), a fundamental mechanism for sensing and regulating ionic and nutrient compositions of extracellular milieu in the small and large intestine, regulates HCO3(-) secretion. Basal and induced HCO3(-) secretory responses to CaSR agonists were determined by pH stat techniques used in conjunction with short-circuit current measurements in mucosa from rat distal colon mounted in Ussing chambers.

View Article and Find Full Text PDF

Globally, zinc deficiency is widespread, despite decades of research highlighting its negative effects on health, and in particular upon child health in low-income countries. Apart from inadequate dietary intake of bioavailable zinc, other significant contributors to zinc deficiency include the excessive intestinal loss of endogenously secreted zinc and impairment in small intestinal absorptive function. Such changes are likely to occur in children suffering from environmental (or tropical) enteropathy (EE)-an almost universal condition among inhabitants of developing countries characterized by morphologic and functional changes in the small intestine.

View Article and Find Full Text PDF

Zinc deficiency is a major cause of childhood morbidity and mortality. The WHO/UNICEF strategy for zinc supplementation as adjunctive therapy for diarrhea is poorly implemented. A conference of experts in zinc nutrition and gastrointestinal disorders was convened to consider approaches that might complement the current recommendation and what research was needed to develop these approaches.

View Article and Find Full Text PDF

Oral rehydration solution (ORS) was established as the cornerstone of therapy for dehydration secondary to acute infectious diarrhea approximately 40 years ago. The efficacy of ORS is based on the ability of glucose to stimulate Na and fluid absorption in the small intestine via a cyclic AMP-independent process. Despite the establishment that ORS is the primary reason for the substantial reduction in morbidity and mortality from diarrhea in children in developing countries, the use of ORS has lagged for many reasons.

View Article and Find Full Text PDF

The sodium-coupled glucose transporter-1 (SGLT1)-based oral rehydration solution (ORS) used in the management of acute diarrhea does not substantially reduce stool output, despite the fact that glucose stimulates the absorption of sodium and water. To explain this phenomenon, we investigated the possibility that glucose might also stimulate anion secretion. Transepithelial electrical measurements and isotope flux measurements in Ussing chambers were used to study the effect of glucose on active chloride and fluid secretion in mouse small intestinal cells and human Caco-2 cells.

View Article and Find Full Text PDF

Na-HCO3 cotransport (NBC) regulates intracellular pH (pHi) and HCO3 secretion in rat colon. NBC has been characterized as a 5,5'-diisothiocyanato-2-2'-stilbene (DIDS)-sensitive transporter in several tissues, while the colonic NBC is sensitive to both amiloride and DIDS. In addition, the colonic NBC has been identified as critical for pHi regulation as it is activated by intravesicular acid pH.

View Article and Find Full Text PDF

Purpose: While secretagogue-induced diarrhea is rich in chloride (Cl(-)) and bicarbonate (HCO(3) (-)) anions, little is known about diarrhea or its anionic composition following irradiation. We performed studies to characterize the differences between cyclic adenosine monophosphate (cAMP)-stimulated anion secretions in irradiated and non-irradiated mice.

Materials And Methods: HCO(3) (-) secretion was examined in basal, cAMP-stimulated, and irradiated jejunal tissues from BALB/c (Bagg albino) mice.

View Article and Find Full Text PDF

KCNN4 channels that provide the driving force for cAMP- and Ca(2+)-induced anion secretion are present in both apical and basolateral membranes of the mammalian colon. However, only a single KCNN4 has been cloned. This study was initiated to identify whether both apical and basolateral KCNN4 channels are encoded by the same or different isoforms.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFA) are the major anion in stool and are synthesized from nonabsorbed carbohydrate by the colonic microbiota. Nonabsorbed carbohydrate are not absorbed in the colon and induce an osmotically mediated diarrhea; in contrast, SCFA are absorbed by colonic epithelial cells and stimulate Na-dependent fluid absorption via a cyclic AMP-independent process involving apical membrane Na-H, SCFA-HCO(3), and Cl-SCFA exchanges. SCFA production represents an adaptive process to conserve calories, fluid, and electrolytes.

View Article and Find Full Text PDF

Diarrhea is a frequent symptom/sign in patients with ulcerative colitis and Crohn's disease (inflammatory bowel diseases), and several different mechanisms likely account for this diarrhea. As treatment of diarrhea is dependent on the pathogenetic process(es) responsible for diarrhea, increased understanding of the pathophysiology of diarrhea will help improve therapy. Inflammation is central to the diarrhea in patients with ulcerative colitis, while in Crohn's disease both inflammatory and noninflammatory mechanisms are responsible.

View Article and Find Full Text PDF

Enteric infections, with or without overt diarrhea, have profound effects on intestinal absorption, nutrition, and childhood development as well as on global mortality. Oral rehydration therapy has reduced the number of deaths from dehydration caused by infection with an enteric pathogen, but it has not changed the morbidity caused by such infections. This Review focuses on the interactions between enteric pathogens and human genetic determinants that alter intestinal function and inflammation and profoundly impair human health and development.

View Article and Find Full Text PDF

Background: Reduction of gross diarrhea rate in excess of that seen over time with intravenous therapy and appropriate antibiotics is not usually achieved by oral glucose-electrolyte rehydration therapy for cholera and cholera-like diarrheas.

Methodology And Principal Findings: This prospective randomized clinical trial at a tertiary referral hospital in southern India was undertaken to determine whether amylase resistant starch, substituting for glucose in hypo-osmolar oral rehydration solution, would reduce diarrhea duration and weight in adults with acute severe dehydrating diarrhea. 50 adult males with severe watery diarrhea of less than three days' duration and moderate to severe dehydration were randomized to receive hypo-osmolar ORS (HO-ORS) or HO-ORS in which amylase resistant high amylose maize starch 50g/L substituted for glucose (HAMS-ORS).

View Article and Find Full Text PDF

Electroneutral Na absorption occurs in the intestine via sodium-hydrogen exchanger (NHE) isoforms NHE2 and NHE3. Bicarbonate and butyrate both stimulate electroneutral Na absorption through NHE. Bicarbonate- but not butyrate-dependent Na absorption is inhibited by cholera toxin (CT).

View Article and Find Full Text PDF

Studies with apical membrane vesicles have shown that two distinct and separate anion exchange processes are present in rat distal colon, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-sensitive CL(-)-HCO(3)(-) exchange, and DIDS-resistant Cl(-)-OH(-) exchange. These studies proposed that anion exchanger (AE)-1 isoform encodes the former as both apical membrane DIDS-sensitive CL(-)-HCO(3)(-) exchange, and AE1 specific mRNA are present only in surface cells and are downregulated in Na-depleted rats, whereas downregulated in adenoma (DRA) encodes the latter as both DIDS-resistant Cl(-)-OH(-) exchange, and DRA-specific proteins are present in apical membranes of both surface and crypt cells and are not altered in Na(+)-depleted rats. Studies were, therefore, initiated to identify the function of rat DRA (rDRA) in vitro.

View Article and Find Full Text PDF

Background: Reduced osmolarity oral rehydration solution (ORS) improved small bowel absorption of fluid and electrolytes in segmental perfusion in experimental animals; this was borne out in clinical practice. Adding amylase-resistant starch (RS) to ORS is expected to increase colonic fluid absorption. This study used combined small and large bowel perfusion to evaluate combinations of reduced osmolarity and starch in ORS.

View Article and Find Full Text PDF