Publications by authors named "Henry J Alitto"

Burst activity is a ubiquitous feature of thalamic neurons and is well documented for visual neurons in the lateral geniculate nucleus (LGN). Although bursts are often associated with states of drowsiness, they are also known to convey visual information to cortex and are particularly effective in evoking cortical responses. The occurrence of thalamic bursts depends on (1) the inactivation gate of T-type Ca channels (T-channels), which become de-inactivated following periods of increased membrane hyperpolarization, and (2) the opening of the T-channel activation gate, which has voltage-threshold and rate-of-change (δv/δt) requirements.

View Article and Find Full Text PDF

Before visual information from the retina reaches primary visual cortex (V1), it is dynamically filtered by the lateral geniculate nucleus (LGN) of the thalamus, the first location within the visual hierarchy at which nonretinal structures can significantly influence visual processing. To explore the form and dynamics of geniculate filtering we used data from monosynpatically connected pairs of retinal ganglion cells (RGCs) and LGN relay cells in the cat that, under anesthetized conditions, were stimulated with binary white noise and/or drifting sine-wave gratings to train models of increasing complexity to predict which RGC spikes were relayed to cortex, what we call "relay status." In addition, we analyze and compare a smaller dataset recorded in the awake state to assess how anesthesia might influence our results.

View Article and Find Full Text PDF

Gain-control mechanisms adjust neuronal responses to accommodate the wide range of stimulus conditions in the natural environment. Contrast gain control and extraclassical surround suppression are two manifestations of gain control that govern the responses of neurons in the early visual system. Understanding how these two forms of gain control interact has important implications for the detection and discrimination of stimuli across a range of contrast conditions.

View Article and Find Full Text PDF

Visual information processed in the retina is transmitted to primary visual cortex via relay cells in the lateral geniculate nucleus (LGN) of the dorsal thalamus. Although retinal ganglion cells are the primary source of driving input to LGN neurons, not all retinal spikes are transmitted to the cortex. Here, we investigate the relationship between stimulus contrast and retinogeniculate communication and test the hypothesis that both the time course and strength of retinogeniculate interactions are dynamic and dependent on stimulus contrast.

View Article and Find Full Text PDF

Unlabelled: Extraclassical surround suppression is a prominent receptive field property of neurons in the lateral geniculate nucleus (LGN) of the dorsal thalamus, influencing stimulus size tuning, response gain control, and temporal features of visual responses. Despite evidence for the involvement of both retinal and nonretinal circuits in the generation of extraclassical suppression, we lack an understanding of the relative roles played by these pathways and how they interact during visual stimulation. To determine the contribution of retinal and nonretinal mechanisms to extraclassical suppression in the feline, we made simultaneous single-unit recordings from synaptically connected retinal ganglion cells and LGN neurons and measured the influence of stimulus size on the spiking activity of presynaptic and postsynaptic neurons.

View Article and Find Full Text PDF

Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures.

View Article and Find Full Text PDF

The thalamus is the heavily interconnected partner of the neocortex. All areas of the neocortex receive afferent input from and send efferent projections to specific thalamic nuclei. Through these connections, the thalamus serves to provide the cortex with sensory input, and to facilitate interareal cortical communication and motor and cognitive functions.

View Article and Find Full Text PDF

The thalamus and neocortex are intimately interconnected via a reciprocal arrangement of feedforward and feedback projections. In this issue of Neuron, Crandall et al. (2015) provide key insight into the functional dynamics of feedback projections and reveal the cellular and circuit mechanisms that underlie a rate-dependent switch in the net influence, suppression versus excitation, that cortex can exert on thalamic relay cells.

View Article and Find Full Text PDF

Extraclassical surround suppression strongly modulates responses of neurons in the retina, lateral geniculate nucleus (LGN), and primary visual cortex. Although a great deal is known about the spatial properties of extraclassical suppression and the role it serves in stimulus size tuning, relatively little is known about how extraclassical suppression shapes visual processing in the temporal domain. We recorded the spiking activity of retinal ganglion cells and LGN neurons in the cat to test the hypothesis that extraclassical suppression influences temporal features of visual responses in the early visual system.

View Article and Find Full Text PDF

Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations.

View Article and Find Full Text PDF

Activation of the cholinergic neurons in the basal forebrain (BF) desynchronizes cortical activity and enhances sensory processing during arousal and attention. How the cholinergic input modulates the activity of different subtypes of cortical neurons remains unclear. Using in vivo two-photon calcium imaging of neurons in layers 1 and 2/3 of mouse visual cortex, we show that electrical stimulation of the BF bi-directionally modulates the activity of excitatory neurons as well as several subtypes of inhibitory interneurons.

View Article and Find Full Text PDF

Despite the increasing use of alert animals for studies aimed at understanding visual processing in the cerebral cortex, relatively little attention has been focused on quantifying the response properties of neurons that provide input to the cortex. Here, we examine the response properties of neurons in the lateral geniculate nucleus (LGN) of the thalamus in the alert macaque monkey and compare these responses to those in the anaesthetized animal. Compared to the anaesthetized animal, we show that magnocellular and parvocellular neurons in the alert animal respond to visual stimuli with significantly higher firing rates.

View Article and Find Full Text PDF

Although sensory processing in V1 has been extensively characterized, the role of GABAergic inhibition is still not well understood. Advances in molecular biology have now removed significant barriers to the direct investigation of inhibitory processes in vivo. Recent studies have provided important insights into the influence of GABAergic inhibition on cortical processing at both the single cell level, where inhibition helps to shape cortical receptive fields, and at the network level, where inhibition is critical for generating cortical oscillations and setting network state.

View Article and Find Full Text PDF

In addition to the classical, center/surround receptive field of neurons in the lateral geniculate nucleus (LGN), there is an extraclassical, nonlinear surround that can strongly suppress LGN responses. This form of suppression likely plays an important role in adjusting the gain of LGN responses to visual stimuli. We performed experiments in alert and anesthetized macaque monkies to quantify extraclassical suppression in the LGN and determine the roles of feedforward and feedback pathways in the generation of LGN suppression.

View Article and Find Full Text PDF

The interspike interval (ISI) preceding a retinal spike has a strong influence on whether retinal spikes will drive postsynaptic responses in the lateral geniculate nucleus (LGN). This ISI-based filtering of retinal spikes could, in principle, be used as a mechanism for processing visual information en route from retina to cortex; however, this form of processing has not been previously explored. Using a white noise stimulus and reverse correlation analysis, we compared the receptive fields associated with retinal spikes over a range of ISIs (0-120 ms).

View Article and Find Full Text PDF

A striking property of neurons in the lateral geniculate nucleus (LGN) of the thalamus is the ability to dynamically filter and transform the temporal structure of their retinal spike input. In particular, LGN neurons respond to visual stimuli with either burst spike responses or tonic spike responses. While much is known from in vitro studies about the cellular mechanisms that underlie burst and tonic spikes, relatively little is known about the sensory stimuli that evoke these two categories of spikes.

View Article and Find Full Text PDF

The activity of neurons in primary visual cortex is influenced by the orientation, contrast, and temporal frequency of a visual stimulus. This raises the question of how these stimulus properties interact to shape neuronal responses. While past studies have shown that the bandwidth of orientation tuning is invariant to stimulus contrast, the influence of temporal frequency on orientation-tuning bandwidth is unknown.

View Article and Find Full Text PDF

Neurons in the lateral geniculate nucleus (LGN) of the thalamus produce spikes that can be classified as burst spikes and tonic spikes. Although burst spikes are generally associated with states of sleep and drowsiness, bursts may also play an important role in sensory processing. This study explores the stimulus properties that evoke burst and tonic spikes and examines the reliability of LGN neurons to produce visually driven bursts.

View Article and Find Full Text PDF

Neurons in primary visual cortex are highly sensitive to the contrast, orientation, and temporal frequency of a visual stimulus. These three stimulus properties can be varied independently of one another, raising the question of how they interact to influence neuronal responses. We recorded from individual neurons in ferret primary visual cortex to determine the influence of stimulus contrast on orientation tuning, temporal-frequency tuning, and latency to visual response.

View Article and Find Full Text PDF

Although nearly half of the synaptic input to neurons in the dorsal thalamus comes from the cerebral cortex, the role of corticothalamic projections in sensory processing remains elusive. Although sensory afferents certainly establish the basic receptive field properties of thalamic neurons, increasing evidence indicates that feedback from the cortex plays a crucial role in shaping thalamic responses. Here, we review recent work on the corticothalamic pathways associated with the visual, auditory, and somatosensory systems.

View Article and Find Full Text PDF