Publications by authors named "Henry Hunt"

Structural genomics consortia established that protein crystallization is the primary obstacle to structure determination using x-ray crystallography. We previously demonstrated that crystallization propensity is systematically related to primary sequence, and we subsequently performed computational analyses showing that arginine is the most overrepresented amino acid in crystal-packing interfaces in the Protein Data Bank. Given the similar physicochemical characteristics of arginine and lysine, we hypothesized that multiple lysine-to-arginine (KR) substitutions should improve crystallization.

View Article and Find Full Text PDF

Genetically resistant or susceptible chickens to Marek's disease (MD) have been widely used models to identify the molecular determinants of these phenotypes. However, these prior studies lacked the basic identification and understanding of immune cell types that could be translated toward improved MD control. To gain insights into specific immune cell types and their responses to Marek's disease virus (MDV) infection, we used single-cell RNA sequencing (scRNAseq) on splenic cells from MD resistant and susceptible birds.

View Article and Find Full Text PDF

High-throughput plant phenotyping in controlled environments (growth chambers and glasshouses) is often delivered via large, expensive installations, leading to limited access and the increased relevance of "affordable phenotyping" solutions. We present two robot vectors for automated plant phenotyping under controlled conditions. Using 3D-printed components and readily-available hardware and electronic components, these designs are inexpensive, flexible and easily modified to multiple tasks.

View Article and Find Full Text PDF

In 2010, sporadic cases of avian leukosis virus (ALV)-like bursal lymphoma, also known as spontaneous lymphoid leukosis (LL)-like tumors, were identified in two commercial broiler breeder flocks in the absence of exogenous ALV infection. Two individual ALV subgroup E (ALV-E) field strains, designated AF227 and AF229, were isolated from two different breeder farms. The role of these ALV-E field isolates in development of and the potential joint impact in conjunction with a Marek's disease virus (MDV) vaccine (SB-1) were further characterized in chickens of an experimental line and commercial broiler breeders.

View Article and Find Full Text PDF

The Figure 3 in the original version of this article was incorrectly published. In this article the top panel of Figure 3 that describes the amino acid sequence alignment is now added. The original article has been corrected.

View Article and Find Full Text PDF
Article Synopsis
  • The MHC class I glycoproteins BF2 and BF1 in chickens differ in their ability to present viral antigens and interact with immune cells.
  • Cytotoxic T lymphocytes can recognize viral antigens presented by the BF2 glycoprotein but not by BF1, indicating BF2's primary role in antigen presentation.
  • While Marek's disease virus decreases BF2 expression, it does not significantly affect BF1, which helps protect cells from NK cell lysis, showcasing their distinct immune functions.
View Article and Find Full Text PDF

Marek's disease (MD) is an important neoplastic disease of chickens caused by Marek ': s disease virus (MDV), a highly oncogenic alphaherpesvirus. In this study using two chicken lines, one resistant and another susceptible to MD, splenic T cells and cecal microbiome were profiled to gain a better understanding of primary differences in these lines. The percent of splenic CD4 T cells were similar regardless of MDV challenge status in both bird lines.

View Article and Find Full Text PDF

Laryngotracheitis (LT) is a highly contagious respiratory disease of chickens that produces significant economic losses to the poultry industry. Traditionally, LT has been controlled by administration of modified live vaccines. In recent years, the use of recombinant DNA-derived vaccines using turkey herpesvirus (HVT) and fowlpox virus has expanded, as they protect not only against the vector used but also against LT.

View Article and Find Full Text PDF

Over the last five decades, the pathogenicity of the Marek's disease virus (MDV) has evolved from the relatively mild strains (mMDV) observed in the 1960s to the more severe very-virulent-plus strains currently observed in today's outbreaks. The use of vaccines to control Marek's disease (MD), but not the infection cycle, is thought to be the major influence on the evolution of MDV. Selection for genetic resistance to MD has also been employed by the industry to control MD in the commercial setting but the role of host genetics on the evolution of MDV has been difficult to investigate in the field.

View Article and Find Full Text PDF

Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells.

View Article and Find Full Text PDF

Marek's disease (MD) is an important neoplastic disease of chickens caused by the Marek's disease virus (MDV), an oncogenic alphaherpesvirus. In this study, dysbiosis induced by MDV on the core gut flora of chicken was assessed using next generation sequence (NGS) analysis. Total fecal and cecum-derived samples from individual birds were used to estimate the influence of MDV infection on the gut microbiome of chicken.

View Article and Find Full Text PDF

Since the first report of a polyneuritis in chickens by Joseph Marek in 1907, the clinical nature of the disease has changed. Over the last five decades, the pathogenicity of the Marek's disease virus (MDV) has continued to evolve from the relatively mild strains observed in the 1960s to the more severe strains labeled very virulent plus currently observed in today's outbreaks. To understand the influence of host genetics, specifically the major histocompatibility complex (MHC), on virus evolution, a bacterial artificial chromosome-derived MDV (Md5B40BAC) was passed in vivo through resistant (MHC-B21) and susceptible (MHC-B13) Line 0 chickens.

View Article and Find Full Text PDF

Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cell-free CD8αα(+), CD3(-) cells with natural killing activity. Cell-mediated cytotoxicity assays revealed complex NK cell discrimination of MHC class I, suggesting the presence of multiple NK cell receptors.

View Article and Find Full Text PDF

The mechanism of Marek's disease (MD) vaccination to prevent the lymphoproliferative disease in chickens is not well understood. It is generally recognized that vaccination prevents disease, including the induction of T-cell tumors, but it does not prevent the pathogenic virus from infecting and replicating in the vaccinated host, nor does it prevent bird to bird spread of the oncogenic virus. The stage at which the vaccinated immune system intervenes in the process from infection to the induction of tumors remains obscure.

View Article and Find Full Text PDF

Background: Avian influenza (AI) infection in poultry can result in high morbidity and mortality, and negatively affect international trade. Because most AI vaccines used for poultry are inactivated, our knowledge of immunity against AI is based largely on humoral immune responses. In fact, little is known about cellular immunity following a primary AI infection in poultry, especially regarding cytotoxic T lymphocytes (CTL's).

View Article and Find Full Text PDF

Marek's disease is a devastating neoplastic disease of chickens caused by Marek's disease virus (MDV). MDV down-regulates surface expression of MHC class I molecules, although the mechanism has remained elusive. MDV harbors a UL49.

View Article and Find Full Text PDF

The chicken's major histocompatibility complex (MHC) haplotype has profound influence on the resistance or susceptibility to certain pathogens. For example, the B21 MHC haplotype confers resistance to Marek's disease (MD). However, non-MHC genes are also important in disease resistance.

View Article and Find Full Text PDF

The Marek's disease virus (MDV, Gallid herpesvirus 2) genome encodes approximately 110 open reading frames (ORFs). Many of these ORFs are annotated based purely on homology to other herpesvirus genes, thus, direct experiments are needed to verify the gene products, especially the hypothetical or MDV-specific ORFs, and characterize their biological function, particularly with respect to pathogenicity in chickens. Previously, a comprehensive two-hybrid assay screen revealed nine specific chicken-MDV protein-protein interactions.

View Article and Find Full Text PDF

Background: Herpesviruses are a major health concern for numerous organisms, including humans, causing both acute and chronic infections recurrent over an individual's lifespan. Marek's disease virus (MDV) is a highly contagious herpesvirus which causes a neoplastic condition in chicken populations. Several vertebrate-infecting herpesviruses have been shown to exist in an integrated state during latent periods of infection.

View Article and Find Full Text PDF

Stem cell antigen 2 (SCA2) is a Ly6 family member whose function is largely unknown. To characterize biological properties and tissue distribution of chicken SCA2, SCA2 was expressed in E. coli, purified, and a polyclonal antibody developed.

View Article and Find Full Text PDF

Endogenous avian leukosis virus (ALVE) and the ALVE receptor (TVB*S1) status of six commercial chicken lines supplying specific-pathogen-free eggs were analyzed. All commercial chicken lines are certified free of the avian leukosis virus (ALV) by screening for expression of the p27 protein using the standard enzyme-linked immunosorbent assay. The commercial chicken lines A, E, and F contained replication competent ALVE inserts.

View Article and Find Full Text PDF

In the chicken, resistance to lymphomas that form following infection with oncogenic strains of Marek's herpesvirus is strongly linked to the major histocompatibility complex (MHC)-B complex. MHC-B21 haplotype is associated with lower tumor-related mortality compared to other haplotypes including MHC-B13. The single, dominantly expressed class I gene (BF2) is postulated as responsible for the MHC-B haplotype association.

View Article and Find Full Text PDF

RNA interference (RNAi) is a promising antiviral methodology. We recently demonstrated that retroviral vectors expressing short-hairpin RNAs (shRNA-mirs) in the context of a modified endogenous micro-RNA (miRNA) can be effective in reducing replication of other retroviruses in chicken cells. In this study, similar RNAi vectors are shown to inhibit replication of the avian herpesvirus, Marek's disease virus (MDV, also known as gallid herpesvirus type 2), and its close relative, herpesvirus of turkeys (HVT).

View Article and Find Full Text PDF

RNA interference (RNAi) has recently emerged as a promising antiviral technique in vertebrates. Although most studies have used exogenous short interfering RNAs (siRNAs) to inhibit viral replication, vectors expressing short hairpin RNAs (shRNA-mirs) in the context of a modified endogenous micro-RNA (miRNA) are more efficient and are practical for in vivo delivery. In this study, replication competent retroviral vectors were designed to deliver shRNA-mirs targeting subgroup B avian leukosis virus (ALV), the most effective of which reduced expression of protein targets by as much as 90% in cultured avian cells.

View Article and Find Full Text PDF

Infection of broiler chickens with subgroup J avian leukosis virus (ALV) results in the induction of myeloid tumors. However, although egg-type chickens are susceptible to infection with ALV-J, the tumor incidence is very low, and on rare occasions the tumors observed are of the myeloid lineage. We recently described the isolation of an ALV (AF115-4) from commercial egg-type chickens suffering from myeloid leukosis.

View Article and Find Full Text PDF