Background: Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for cardiac disease modelling, drug discovery and regenerative medicine. Despite the advancement in various differentiation protocols, the heterogeneity of the generated population composed of diverse cardiac subtypes poses a significant challenge to their practical applications. Mixed populations of cardiac subtypes can compromise disease modelling and drug discovery, while transplanting them may lead to undesired arrhythmias as they may not integrate and synchronize with the host tissue's contractility.
View Article and Find Full Text PDFBackground: Tissue organoids generated from human pluripotent stem cells are valuable tools for disease modelling and to understand developmental processes. While recent progress in human cardiac organoids revealed the ability of these stem cell-derived organoids to self-organize and intrinsically formed chamber-like structure containing a central cavity, it remained unclear the processes involved that enabled such chamber formation.
Methods: Chambered cardiac organoids (CCOs) differentiated from human embryonic stem cells (H7) were generated by modulation of Wnt/ß-catenin signalling under fully defined conditions, and several growth factors essential for cardiac progenitor expansion.
Mycosis fungoides (MF) is characterized by epidermotropic atypical lymphocytes infiltrate with α/β T-helper memory immunophenotype (βF1+, CD3+, CD4+, CD45Ro+, and CD8-). Angiocentricity is always associated with aggressive behavior or poor outcome in primary or secondary cutaneous lymphomas. Rare cases of angiocentric MF with a T-cytotoxic immunophenotype (CD3+, CD4-, CD8+, TIA-1+) have been described.
View Article and Find Full Text PDFThe immature characteristics and metabolic phenotypes of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) restrict their applications for disease modeling, drug discovery, and cell-based therapy. Leveraging on the metabolic shifts from glycolysis to fatty acid oxidation as CMs mature, a human hexokinase1-GFP metabolic reporter cell line (H7 HK1-GFP) was generated to facilitate the isolation of fetal or more matured hPSC-CMs. RNA sequencing of fetal versus more matured CMs uncovered a potential role of interferon-signaling pathway in regulating CM maturation.
View Article and Find Full Text PDFCirculating factors have been implicated in the pathogenesis of minimal change disease (MCD), and may have direct effects on cholesterol metabolism. This study investigated the pathogenesis of hypercholesterolemia in an IL-13 overexpression rat model of MCD prior to the onset of proteinuria, so as to establish the direct contribution of IL-13, especially with regard to hepatic cholesterol handling. In this model of MCD, the temporal relationship between hypercholesterolemia and proteinuria was first identified.
View Article and Find Full Text PDFMitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disorder that is commonly caused by the m.3243A > G mutation in the MT-TL1 gene encoding for mitochondrial tRNA(Leu(UUR)). While clinical studies reported cerebral infarcts, atherosclerotic lesions, and altered vasculature and stroke-like episodes (SLE) in MELAS patients, it remains unclear how this mutation causes the onset and subsequent progression of the disease.
View Article and Find Full Text PDFCell lines recapitulate cancer heterogeneity without the presence of interfering tissue found in primary tumor. Their heterogeneous characteristics are reflected in their multiple genetic abnormalities and variable responsiveness to drug treatments. In order to understand the heterogeneity observed in Asian gastric cancers, we have performed array comparative genomic hybridization (aCGH) on 18 Asian gastric cell lines.
View Article and Find Full Text PDFPrevious efforts to derive lung progenitor cells from human embryonic stem (hES) cells using embryoid body formation or stromal feeder cocultures had been limited by low efficiencies. Here, we report a step-wise differentiation method to drive both hES and induced pluripotent stem (iPS) cells toward the lung lineage. Our data demonstrated a 30% efficiency in generating lung epithelial cells (LECs) that expresses various distal lung markers.
View Article and Find Full Text PDFOne of the most pertinent concerns of using differentiated cells derived from human embryonic stem cells (hESC) is the presence of residual undifferentiated hESC, because they carry a risk of teratoma formation. A new cell-cell separation approach that eliminates teratoma-forming hESC in order to ensure safer cell therapy was developed. By combining antibodies (IgMs or IgGs) for the selective removal of undifferentiated hESC using magnetic activated cell sorting (MACS) followed by selective killing of residual hESC with the unique cytotoxic antibody mAb 84, the required purity of differentiated hESC can be achieved.
View Article and Find Full Text PDFTo identify additional growth factors for optimizing propagation of human embryonic stem cells (hESCs), we mined publicly available data sets for the transcriptomes of murine and human ESCs and feeder cells, thereby generating a list of growth factors and complementary receptors. We identified the major pathways previously reported to be important, as well as several new ones. One pathway is the Pleiotrophin (PTN)-Pleiotrophin receptor (PTPRZ1) axis.
View Article and Find Full Text PDFObjective: MicroRNA (miRNA) expression profiling was performed on ex vivo differentiating erythroid cultures derived from human umbilical cord blood (UCB) CD34 cells and K562 cells to identify miRNAs involved in erythropoiesis.
Materials And Methods: Both cell types were subjected to growth factor cocktails stimulating erythroid differentiation and were harvested for small RNA extraction at regular intervals. miRNAs with at least a 1.
Plasmid p1258 carries the cadA gene that confers resistance to cadmium, lead, and zinc. CadA catalyzes ATP-dependent cadmium efflux from cells of Staphylococcus aureus. It is a member of the superfamily of P-type ATPases and belongs to the subfamily of soft metal ion pumps.
View Article and Find Full Text PDF